Complex Analysis Qualifying Examination

August 1997
Name: \qquad

Directions:

1. You are trying to convince the reader that you know what you are doing. To that end we suggest your presentation be clear, consise and complete.
2. Start each question on a new sheet of paper. Write only on one side of each sheet of paper. Number the pages and write your name in each page.

Questions:

Part A: Answer four out of the six questions below.

1. Find the image of the quarter disc $\Omega=\{z \in C| | z \mid \leq 1, \Re z \geq 0, \Im z \geq 0\}$ under the $\operatorname{map} w=\frac{1}{2 i}\left(z-\frac{1}{z}\right)$.
2. Assume that $w=f(z)$ is an entire function, and that a and b are two positive constants so that $f(z)$ satisfyes $|f(z)| \leq a+b|z|^{2}$ for all $z \in C$. Prove that $f(z)$ is a polynomial of degree no larger than two.
3. Answer only one of the following questions:
(a) Evaluate the integral

$$
\int_{0}^{\infty} \frac{x^{\alpha-1}}{1+x} d x, \text { where } 0<\alpha<1
$$

(b) Evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{\cos k x}{\left(1+x^{2}\right)^{2}} d x, \text { where } 0<k<\infty
$$

4. Assume that $\left\{f_{n}(z)\right\}_{n=1}^{\infty}$ is a sequence of analytic functions defined on the region Ω, such that $\lim _{n \rightarrow \infty} f_{n}(z)=f(z)$ uniformly on compact subsets of Ω. Show that $f(z)$ is analytic in Ω and that $\lim _{n \rightarrow \infty} f_{n}^{\prime}(z)=f^{\prime}(z)$ uniformly on compact subsets of Ω.
5. Let $u(x, y)$ be the bounded harmonic function in the upper half-plane $\{z=x+i y \in C \mid y>0\}$ that has the boundary value

$$
u(x, 0)=\operatorname{sgn} x= \begin{cases}-1, & \text { if } x<0 \\ 1, & \text { if } x>0\end{cases}
$$

Find a harmonic conjugate $v(x, y)$ of $u(x, y)$.
6. Find the residue of the following functions at the indicated singularities:
(a) $\frac{\sin ^{2} z}{z^{5}}$ at $z=0$
(b) $\frac{\sqrt{1-z}}{z^{2}}$ at $z=0$
(c) $\frac{1^{z^{2}}}{e^{z}-1}$ at $z=2 \pi i$

2art B: Answer four out of the six questions below.

1. Answer only one of the following questions:
(a) Find a meromorphic function $f(z)$ that has simple poles at $z=\sqrt{n}, n=1,2,3, \ldots$, with residue $\operatorname{res}(f(z), z=n)=1$.
(b) Find an entire function $f(z)$ that has double roots at $z=\sqrt{n}$, where $n=1,2,3, \ldots$
2. Answer only one of the following questions:
(a) State and prove Rouche's theorem.
(b) State and prove the argument principle.
3. Show that the equation $(z-2)^{2}=e^{-z}$ has two distinct roots in the disc $|z-2| \leq 1$.
4. Prove that if $f(z)$ is an entire function without any roots, then there is an entire function $g(z)$ so that $f(z)=e^{g(z)}$.
5. Answer only one of the following questions:
(a) Prove that if $u(z)$ is a non-constant harmonic function in the domain Ω, then $u(z)$ does not have local maximum in Ω.
(b) Let $u(x, y)$ be a harmonic function on the entire plane, and let $v(x, y)$ be a harmonic conjugate of $u(x, y)$. Assume that $u(x, y) \leq v^{2}(x, y)$ for all $(x, y) \in C$. Prove that both $u(x, y)$ and $v(x, y)$ must be constant.
6. Assume that $f(z)$ is analytic in the unit disc $D=\{z \in C| | z \mid<1\}, f(0)=0$, and $|f(z)| \leq 1$ for $|z|<1$. Prove that $|f(z)| \leq|z|$ for $|z|<1$.
