Complex Analysis Qualifying Exam

January 1999

Do the following 8 problems. Show all your work and explain all steps in a proof or derivation.

- 1. State the Cauchy-Goursat Integral Theorem and give an outline of its proof.
- 2. Classify the singularities at z=0 of the following functions f(z) and find their residue.

a)
$$f(z) = \frac{1}{z}$$
.

b)
$$f(z) = z \cos(\frac{1}{z})$$
.

c)
$$f(z) = z^{-3} \csc(z^2)$$
.

- 3. Consider the following meromorphic functions.
 - a) Expand $f(z) = \frac{1}{2z z^2}$ in a power series about z = 1.
- b) Find a Laurent expansion of $f(z) = \frac{1}{z} + \frac{1}{z+2} + \frac{1}{(z-1)^2}$ which is valid in the annulus 1 < |z| < 2.
- 4. Show that $\tan z = z$ has no complex solutions of the form z = x + iy with $x \neq 0, y \neq 0$.
- 5. Use the theory of residues to evaluate the integral $\int_0^\infty \frac{\sqrt{x}dx}{x^2+4}$.
- 6. State Rouche's theorem and use it to determine how many roots of the polynomial $z^4 + 5z + 3$ lie inside:
 - a) the unit disc.
 - b) the annulus 1 < |z| < 2.
- 7. Prove the Casorati-Weierstrass Theorem: Let z_0 be an isolated essential singularity of a function f(z). Then the image of a punctured neighborhood $U\setminus\{z_0\}$ under f is dense in the complex plane \mathbb{C} .
- 8. State the Mittag-Leffler Theorem and use it to prove that $\frac{\pi^2}{\sin^2 \pi z} = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2}$.