Complex Analysis Qualifying Exam

August 1999

Do the following 8 problems. Show all your work and explain all steps in a proof or derivation.

- 1. Let f be analytic on $\mathbb C$ and real-valued on the circle |z|=1. Show tht f is a constant on $\mathbb C$.
- 2. Classify the singularities at z = 0 of the following functions f(z) (including the point at ∞).

a)
$$f(z) = \frac{\sin^2 z}{z^4}.$$

b)
$$f(z) = \sin(\frac{1}{z}) + \frac{1}{z^2(z-1)}$$
.

c)
$$f(z) = \csc z - \frac{1}{z}$$
.

- 3. Show the map $f(z) = \frac{z-i}{z+i}$ is a bijection of the upper half plane $H = \{z \in \mathbb{C} | \text{Im } z > 0\}$ onto the unit disc $D = \{z \in \mathbb{C} : |z| < 1\}$.
- Let f be a continuous map of a connected open subset U ⊂ C into C.
- a) Show that f has a primitive on U if and only if $\int_{\gamma} f(z)dz=0$ for every simple closed curve γ contained in U.
- b) Consider $f(z) = \frac{1}{z}$ on the punctured unit disc $D(0,1) \{0\}$. Does f have a primitive on $D(0,1) \{0\}$? Explain.
- 5. Use the theory of residues to evaluate the integral $\int_0^\infty \frac{\ln x \ dx}{x^2 + a^2}$.
- 6. State the Argument Principle and use it to prove the Open Mapping Theorem: Let f be analytic on some region Ω . Then the image f(U) is open in $\mathbb C$ for every open set $U\subset\Omega$. Hint. Apply the Argument Principle to the function f(z)-w.
- 7. Use the Casorati-Weierstrass Theorem to prove that if the composition $f \circ g$ of two entire functions f and g is a polynomial, then both f and g are polynomials.
- 8. Let f be a bounded analytic function on the disc D(0,R). Suppose that f also satisfies $f^{(i)}(0) = 0$ for all $i = 0, \dots, k$. Show that f satisfies the inequality $|f(z)| \leq \frac{M}{R^{k+1}} |z|^{k+1}$ on D(0,R) where $M = \sup_{x \in D(0,R)} |f(z)|$.