Spring 2000
Instructions: There are nine (9) questions on this examination, and each question is worth 25 points. Work any 8 problems. A maximum score of 200 points is possible.

1. Find a conformal mapping of the strip $0<\Re z<1$ onto the unit disk in such a way that $z=1 / 2$ goes to $w=0$ and $z=\infty$ goes to $w=1$.
2. According to the Weirstrass factorization theorem, $f(z)=\cos \sqrt{z}$ can be written as an infinite product

$$
f(z)=C e^{g(x)} z^{m} \prod_{1}^{\infty}\left(1-\frac{z}{a_{n}}\right) e^{h_{n}(z)}
$$

where $g(z)$ is entire and

$$
h_{n}= \begin{cases}0, & k=0 \\ \frac{z}{a_{n}}+\frac{1}{2}\left(\frac{z}{a_{n}}\right)^{2}+\cdots+\frac{1}{k}\left(\frac{z}{a_{n}}\right)^{k}, & k \in \mathbb{Z}^{+}\end{cases}
$$

Determine a_{n}, k and m
3. According to the Mittag-Leffer theorem, the meromorphic function

$$
f(z)=\frac{\pi^{2}}{\sin ^{2} \pi z},
$$

can be expressed by the infinite series

$$
f(z)=\sum_{k}\left[P_{k}\left(\frac{1}{z-b_{k}}\right)-p_{k}(z)\right]+g(z)
$$

where $P_{k}(z), p_{k}(z)$ are appropriately chosen polynomials, b_{k} are appropriately chosen complex numbers and $g(z)$ is analytic in the entire complex plane. Determine b_{k}, P_{k} and p_{k}.
4. For $a, b>0$, evaluate the integral

$$
\int_{0}^{\infty} \frac{\cos a x}{x^{2}+b^{2}} d x
$$

Carefully justify any estimate you make.
5. Evaluate the integral

$$
\int_{0}^{\infty} \frac{x^{p}}{1+x^{2}} d x
$$

with $-1<p<1$ by contour integration. As in the previous problem, carefully justify all your estimates.
6. Let $\mathcal{B}(0 ; 1)=\{z \in \mathbb{C}|z|<1\}$ be the unit disk. If $a>e$, and n is a positive integer, prove that the equation $\boldsymbol{e}^{\boldsymbol{x}}=\boldsymbol{a} z^{n}$ has n distinct roots in $\mathcal{B}(0 ; 1)$ (counted with multiplicity).
7. Let $\Omega \subset \mathbb{C}$ be a simply connected region, and $u: \Omega \rightarrow \mathbb{R}$ be a harmonic function. Prove that there exists $v: \Omega \rightarrow \mathbb{R}$ such that $u+i v$ is analytic on Ω. Hint: Consider

$$
g(z)=\frac{\partial u}{\partial x}+i\left(-\frac{\partial u}{\partial y}\right)
$$

8. Assume that $f(z)$ is analytic on $C \backslash\{0\}$ and

$$
|f(z)| \leq|z|^{2}+\frac{1}{|z|^{1 / 2}}
$$

for all $z \in \mathbb{C} \backslash\{0\}$. Prove that f is a polynomial of degree at most 2 .
9. Let $f(z)$ be continuous on the closed right half-plane $\mathcal{H}=\{z \in \mathbb{C} \mid \Re z \geq 0\}$ and analytic on the open right half-plane $\mathcal{H}=\{z \in \mathbb{C} \mid \not \approx z>0\}$. Suppose there exist constants C, $M \in \mathbb{R}$ and a positive integer n such that
(a) $|f(i y)| \leq M$ for all $y \in \mathbb{R}$,
(b) $|f(z)| \leq C\left(1+|z|^{n}\right)$ for all $z \in \mathcal{H}$.

Prove that $|f(z)| \leq M$ for all $z \in \mathcal{H}$.
Hint: For $\epsilon>0$, consider

$$
f_{c}(z):=\frac{f(z)}{(1+\epsilon z)^{n+1}}
$$

and apply the maximum principle.

