Complex Variables
Master’s Examination

Spring 2000

Instructions: There are nine (9) questions on this examination, and each question is worth
25 points. Work any 8 problems. A maximum score of 200 points is possible.

1. Find a conformal mapping of the strip 0 < Rz < 1 onto the unit disk in such a way
that z=1/2 goestow =0 and z =00 goes to w = 1.
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According to the Weirstrass factorization theorem, f(z) = cos /z can be written as an
infinite product
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where g(z) is entire and
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Determine a,, k and m

3. According to the Mittag-Lefller theorem, the meromorphic function
ks
flz)= sinfrz '

can be expressed by the infinite series
1
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where Pi(z), px(z) are appropriately chosen polynomials, b are appropriately chosen
complex numbers and g{z) is analytic in the entire complex plane. Determine be, Py
and pg.
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For a,b > 0, evaluate the integral
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Carefully justify any estimate you make.
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with —1 < p < 1 by contour integration. As in the previous problem, carefully justify
all your estimates.
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. Evaluate the integral
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. Let B(0;1) = {z € C| |2| < 1} be the unit disk. If a > e, and n is a positive inte-

ger, prove that the equation €* = az" has n distinct roots in B(0;1) (counted with
multiplicity).

. Let © ¢ C be a simply connected region, and u : 2 — R be a harmonic function. Prove

that there exists v : Q — R such that u + iv is analytic on Q.

Hint: Consider
(z) = . + i bu
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. Assume that f(z) is analytic on C\ {0} and

@I < 1P + 5

for all z € C\ {0}. Prove that f is a polynomial of degree at most 2.

. Let f(z) be continuous on the closed right half-plane # = {z € C|Rz > 0} and analytic

on the open right half-plane % = {z € C|Rz > 0}. Suppose there exist constants C,
M € R and a positive integer n such that
(2) |fGy)| < MforallyeR,
(0) [f(z)) £ C+|e*) forall z€ K.
Prove that |f(z)| < M forall z € H.
Hint: For € > 0, consider
flz)
(1 + ex)n+!

fz) =

and apply the maximum principle.



