Complex Variables Master's Examination

Spring 2000

Instructions: There are nine (9) questions on this examination, and each question is worth 25 points. Work any 8 problems. A maximum score of 200 points is possible.

- Find a conformal mapping of the strip 0 < Rz < 1 onto the unit disk in such a way
 that z = 1/2 goes to w = 0 and z = ∞ goes to w = 1.
- 2. According to the Weirstrass factorization theorem, $f(z) = \cos \sqrt{z}$ can be written as an infinite product

$$f(z) = Ce^{g(z)}z^m \prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n}\right)e^{h_n(z)} ,$$

where g(z) is entire and

$$h_n = \left\{ \begin{array}{ll} 0, & k = 0 \\ \frac{z}{a_n} + \frac{1}{2} \left(\frac{z}{a_n}\right)^2 + \dots + \frac{1}{k} \left(\frac{z}{a_n}\right)^k , & k \in \mathbb{Z}^+ \end{array} \right.$$

Determine a_n , k and m

3. According to the Mittag-Leffler theorem, the meromorphic function

$$f(z) = \frac{\pi^2}{\sin^2 \pi z} ,$$

can be expressed by the infinite series

$$f(z) = \sum_{k} \left[P_k \left(\frac{1}{z - b_k} \right) - p_k(z) \right] + g(z) ,$$

where $P_k(z)$, $p_k(z)$ are appropriately chosen polynomials, b_k are appropriately chosen complex numbers and g(z) is analytic in the entire complex plane. Determine b_k , P_k and p_k .

4. For a, b > 0, evaluate the integral

$$\int_0^\infty \frac{\cos ax}{x^2 + b^2} dx .$$

Carefully justify any estimate you make.

5. Evaluate the integral

$$\int_0^\infty \frac{x^p}{1+x^2} dx ,$$

with -1 by contour integration. As in the previous problem, carefully justify all your estimates.

- 6. Let $\mathcal{B}(0;1)=\{z\in\mathbb{C}||z|<1\}$ be the unit disk. If a>e, and n is a positive integer, prove that the equation $e^z=az^n$ has n distinct roots in $\mathcal{B}(0;1)$ (counted with multiplicity).
- Let Ω ⊂ C be a simply connected region, and u : Ω → R be a harmonic function. Prove that there exists v : Ω → R such that u + iv is analytic on Ω.

Hint: Consider

$$g(z) = \frac{\partial u}{\partial x} + i \left(-\frac{\partial u}{\partial y} \right) .$$

8. Assume that f(z) is analytic on $\mathbb{C} \setminus \{0\}$ and

$$|f(z)| \le |z|^2 + \frac{1}{|z|^{1/2}}$$

for all $z \in \mathbb{C} \setminus \{0\}$. Prove that f is a polynomial of degree at most 2.

9. Let f(z) be continuous on the closed right half-plane $\hat{\mathcal{H}} = \{z \in \mathbb{C} | \Re z \geq 0\}$ and analytic on the open right half-plane $\mathcal{H} = \{z \in \mathbb{C} | \Re z > 0\}$. Suppose there exist constants C,

 $M \in \mathbb{R}$ and a positive integer n such that

(a) |f(iy)| ≤ M for all y ∈ R,
 (b) |f(z)| ≤ C (1 + |z|ⁿ) for all z ∈ H.

Prove that $|f(z)| \leq M$ for all $z \in \mathcal{H}$.

Hint: For $\epsilon > 0$, consider

$$f_{\epsilon}(z) := \frac{f(z)}{(1+\epsilon z)^{n+1}}$$

and apply the maximum principle.