Complex Analysis Qualifying Examination

August 2000

SS \# :

Directions:

Do the following 8 problems. You may choose to answer the problems in any order. Please start each question on a new sheet of paper. Write only on one side of each sheet of paper. Number the pages and write your $S S$ \# in each page. Please show all your work and explain all steps in a proof or derivation.

Questions:

1. (a) Find the linear fractional transformation $w=f(z)$ for which $f(0)=0, f(2)=4$, $f(\mathrm{i})=1-\mathrm{i}$, and its inverse.
(b) Obviously $z=0$ is a fixed point; are there any other fixed points?
(c) Describe the image of the region $1 \leq y$ in the w-plane.
2. Classify the singularities (including the point at ∞) and find the residues for
a) $f(z)=\sin \left(\frac{1}{z}\right)$
b) $f(z)=\frac{\sin \left(z^{2}\right)}{z^{7}}$
c) $f(z)=\frac{1}{z^{2}} \cot z$.
3. Expand the function $f(z)=\frac{z^{3}+2 z-4}{z}$ in power series around $z=1$ and give its radius of convergence.
4. Evaluate the real integral (and justify all steps)

$$
\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)^{2}} d x
$$

5. (a) Show that $u(x, y)=x^{3}-3 x y^{2}+y^{2}-x^{2}$ is harmonic in the entire plane.
(b) Find a harmonic conjugate $v(x, y)$.
(c) Give explicitely an analytic function $w=f(z)$ with $u=\operatorname{Re} f$ and $v=\operatorname{Im} f$.
6. State and prove the Cauchy integral formula.
7. Assume that $w=f(z)=u(z)+\mathrm{i} v(z)$ is an analytic function mapping a domain D in the z-plane onto a domain D^{\prime} in the w-plane. If $\phi(u, v)$ is a harmonic function in D^{\prime}, show that the function

$$
\Phi(x, y)=\phi(u(x, y), v(x, y))
$$

is harmonic in D.
8. (a) State Rouche's theorem.
(b) Find the number of zeros of $f(z)=2 z^{5}+7 z^{3}+z^{2}-3$ in the annulus $1<|z|<2$.

