Complex Analysis Qualifying Examination

August 2000

SS #:______

Directions:

Do the following 8 problems. You may choose to answer the problems in any order. Please start each question on a new sheet of paper. Write only on one side of each sheet of paper. Number the pages and write your SS # in each page. Please show all your work and explain all steps in a proof or derivation.

Questions:

1. (a) Find the linear fractional transformation w = f(z) for which f(0) = 0, f(2) = 4, f(i) = 1 - i, and its inverse.

(b) Obviously z = 0 is a fixed point; are there any other fixed points?

(c) Describe the image of the region $1 \leq y$ in the w-plane.

2. Classify the singularities (including the point at ∞) and find the residues for

a) $f(z) = \sin\left(\frac{1}{z}\right)$ b) $f(z) = \frac{\sin(z^2)}{z^7}$ c) $f(z) = \frac{1}{z^2}\cot z$.

3. Expand the function $f(z) = \frac{z^3 + 2z - 4}{z}$ in power series around z = 1 and give its radius of convergence.

4. Evaluate the real integral (and justify all steps)

$$\int_0^\infty \frac{x^2}{(x^2+1)^2} \, dx$$

5. (a) Show that $u(x,y) = x^3 - 3xy^2 + y^2 - x^2$ is harmonic in the entire plane.

(b) Find a harmonic conjugate v(x, y).

(c) Give explicitly an analytic function w = f(z) with u = Re f and v = Im f.

6. State and prove the Cauchy integral formula.

7. Assume that w = f(z) = u(z) + iv(z) is an analytic function mapping a domain D in the z-plane onto a domain D' in the w-plane. If $\phi(u, v)$ is a harmonic function in D', show that the function

$$\Phi(x, y) = \phi(u(x, y), v(x, y))$$

is harmonic in D.

8. (a) State Rouche's theorem.

(b) Find the number of zeros of $f(z) = 2z^5 + 7z^3 + z^2 - 3$ in the annulus 1 < |z| < 2.

1