Complex Analysis Qualifying Examination

August 2002

SS \# : \qquad

Directions:

Do the following 8 problems. You may choose to answer the problems in any order. Please start each question on a new sheet of paper. Write only on one side of each sheet of paper. Number the pages and write your $S S$ \# in each page. Please show all your work and explain all steps in a proof or derivation.

Questions:

1. a) Three points, z_{1}, z_{2}, and z_{3} satisfy the conditions

$$
z_{1}+z_{2}+z_{3}=0 \text {, and }\left|z_{i}\right|=1, \quad 1 \leq i \leq 3 .
$$

Show that these points lie at the vertices of an equilateral triangle inscribed in the unit circle.
b) Give a generalization (without proof) of the result in part (a) for the case of n points.
2. a) Give a precise statement of the Cauchy Integral Formula. b) Give a proof of this formula.
3. a) State Rouche's theorem.
b) Find the number of zeros of the function

$$
f(z)=2 z^{5}+7 z^{3}+z^{2}-3
$$

in the annulus $1<|z|<2$
4. Let $f(z)$ be a complex valued continuous function on a simple contour γ and define a function $g(z)$ by

$$
g(z)=\int_{\gamma} \frac{f(\xi) \cdot d \xi}{\xi-z}
$$

a) Show that $g(z)$ is analytic in any domain containing no points of γ.
b) Find an expression for $g^{\prime}(z)$.
5. a) Find a bound for the modulus of the integral show below:

$$
\int_{\gamma} \sin ^{2}(z) d z
$$

where γ is the simple contour $\gamma(t)=(1-t)+i \prod_{t}$ and $0 \leq t \leq 1$.
b) Evaluate exactly the modulus of the integral in (a).
6. Classify the singularities and find residues for each of the following functions. Include points at infinity.
a) $z^{2}+2 z^{5}$
C) $\cot (z)$
b) $\frac{1}{\sin (z)-\cos (z)}$
d). $\frac{1}{z\{\exp (z)-1\}}$
7. Evaluate the integral

$$
\int_{0}^{\pi} \frac{d \theta}{a+\sin ^{2}(\theta)} \quad a>0
$$

8. Evaluate the improper integral

$$
\int_{-\infty}^{\infty} \frac{\cos (x) d x}{1+x^{4}}
$$

Include justifications for all steps in your calculation.

