Complex Analysis Qualifying Exam

August 2004

Directions: Do all of the following problems. Show all of your work, and justify all of your calculations.

1. Evaluate

(a)
$$\int_0^\infty e^{-x^2} \cos \lambda x \, dx$$

(b)
$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{1 + \cos^2 \theta}$$

It may be helpful to know that

$$\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}.$$

2. Classify all of the singularities and find the associated residues for each of the following functions:

(a) $z \cos 2z$

(b)
$$\frac{z^3 - z^2 + 2}{z - 1}$$
.

3. Let $f: \mathbb{C} \to \mathbb{C}$ be entire, and set g(z) := f(1/z). Prove that f is a polynomial if and only if g(z) has a pole at z = 0.

4. Let $U \subset \mathbb{C}$ be open, and let $f \in C^0(U)$. For each $r \in \mathbb{R}^+$ set $D(0,r) := \{z \in \mathbb{C} : |z| < r\}$. Suppose that for every $\overline{D}(z_0,r) \subset U$ and for all $z \in \overline{D}(z_0,r)$ one has that

$$f(z) = \oint_{\partial D(z_0, r)} \frac{f(\zeta)}{\zeta - z} d\zeta$$

(the curve $\partial D(z_0, r)$ is followed in the counterclockwise direction). Prove that f is analytic.

5. Set

$$f(z) := \ln(z + (z^2 - 1)^{1/2}).$$

The branch cut for $(z^2-1)^{1/2}$ is to be on the axis $\operatorname{Im} z=0$ with $-1\leq \operatorname{Re} z\leq 1$.

- (a) Show that $(z^2-1)^{1/2}$ is analytic at all values of $z\in\mathbb{C}$ not on the branch cut.
- (b) For the transformation $w := z + (z^2 1)^{1/2}$ determine the branch cut for f(w).

6. Let D:=D(0,1), and suppose that $f:D\mapsto\mathbb{C}$ is analytic, and further suppose that f is continuous on \overline{D} . Assume that $f(z)\neq 0$ for all $z\in\overline{D}$, and that |f(z)|=1 for $z\in\partial D$. Show that $f(z)=\mathrm{e}^{\mathrm{i}\theta}$ for some $\theta\in[0,2\pi)$.

1

7. For each $n \in \mathbb{N}$ set

$$f_n(z) := \sum_{j=1}^n \frac{z^{-j}}{j!}.$$

For a given $\rho > 0$, show that there is an $N(\rho)$ such that if $n > N(\rho)$, then all of the zeros of $f_n(z)$ lie within $D(0, \rho)$.

8. Let

$$f(z) := \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}.$$

- (a) Compute the order of f(z).
- (b) Write the Hadamard product expansion of f(z).