Complex Analysis Qualifying Exam

August 2004

Directions: Do all of the following problems. Show all of your work, and justify all of your calculations.

1. Evaluate
(a) $\int_{0}^{\infty} \mathrm{e}^{-x^{2}} \cos \lambda x \mathrm{~d} x$
(b) $\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{1+\cos ^{2} \theta}$

It may be helpful to know that

$$
\int_{-\infty}^{+\infty} \mathrm{e}^{-x^{2}} \mathrm{~d} x=\sqrt{\pi}
$$

2. Classify all of the singularities and find the associated residues for each of the following functions:
(a) $z \cos 2 z$
(b) $\frac{z^{3}-z^{2}+2}{z-1}$.
3. Let $f: \mathbb{C} \mapsto \mathbb{C}$ be entire, and set $g(z):=f(1 / z)$. Prove that f is a polynomial if and only if $g(z)$ has a pole at $z=0$.
4. Let $U \subset \mathbb{C}$ be open, and let $f \in C^{0}(U)$. For each $r \in \mathbb{R}^{+}$set $D(0, r):=\{z \in \mathbb{C}:|z|<r\}$. Suppose that for every $\bar{D}\left(z_{0}, r\right) \subset U$ and for all $z \in \bar{D}\left(z_{0}, r\right)$ one has that

$$
f(z)=\oint_{\partial D\left(z_{0}, r\right)} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta
$$

(the curve $\partial D\left(z_{0}, r\right)$ is followed in the counterclockwise direction). Prove that f is analytic.
5. Set

$$
f(z):=\ln \left(z+\left(z^{2}-1\right)^{1 / 2}\right) .
$$

The branch cut for $\left(z^{2}-1\right)^{1 / 2}$ is to be on the axis $\operatorname{Im} z=0$ with $-1 \leq \operatorname{Re} z \leq 1$.
(a) Show that $\left(z^{2}-1\right)^{1 / 2}$ is analytic at all values of $z \in \mathbb{C}$ not on the branch cut.
(b) For the transformation $w:=z+\left(z^{2}-1\right)^{1 / 2}$ determine the branch cut for $f(w)$.
6. Let $D:=\frac{D}{D}(0,1)$, and suppose that $f: D \mapsto \mathbb{C}$ is analytic, and further suppose that f is continuous on \bar{D}. Assume that $f(z) \neq 0$ for all $z \in \bar{D}$, and that $|f(z)|=1$ for $z \in \partial D$. Show that $f(z)=\mathrm{e}^{\mathrm{i} \theta}$ for some $\theta \in[0,2 \pi)$.
7. For each $n \in \mathbb{N}$ set

$$
f_{n}(z):=\sum_{j=1}^{n} \frac{z^{-j}}{j!}
$$

For a given $\rho>0$, show that there is an $N(\rho)$ such that if $n>N(\rho)$, then all of the zeros of $f_{n}(z)$ lie within $D(0, \rho)$.
8. Let

$$
f(z):=\sum_{n=0}^{\infty} \frac{z^{2 n}}{(2 n)!} .
$$

(a) Compute the order of $f(z)$.
(b) Write the Hadamard product expansion of $f(z)$.

