Complex Variables Fall 2006
 MS/PhD Qualifying Examination

Instruction: Complete all problems.

1a) State Rouché's theorem and use it to show that all zeros of the polynomial

$$
p(z)=z^{4}+6 z+3
$$

lie in the circle $|z|<2$.
b) How many zeros of $p(z)$ lie in the annulus $1<|z|<2$?
2) Classify the singularities in \mathbb{C} of the functions

$$
f(z)=\frac{z-\sin z}{z^{4}}
$$

and

$$
g(z)=\frac{1}{z^{2}(z+1)}+\sin \left(\frac{1}{z}\right)
$$

3) Let

$$
f(z)=\frac{1}{z^{2}\left(e^{z}-e^{-z}\right)}, \quad 0<|z|<\pi
$$

Compute the first three non-zero terms of the Laurent expansion of $f(z)$ in $0<|z|<\pi$.
4) Let $f(z)$ and $g(z)$ be entire functions satisfying

$$
|f(z)| \leq 10|g(z)| \quad \text { for all } \quad z \in \mathbb{C}
$$

Does it follow that there exists $\lambda \in \mathbb{C}$ with

$$
f(z)=\lambda g(z) \text { for all } z \in \mathbb{C} ?
$$

Give a proof or a counterexample.
5) Let $f(z)$ be an entire function for which the real part

$$
\operatorname{Re} f(x+i y)=u(x, y)
$$

is a bounded function. Does it follow that $f(z)$ is a constant function? Give a proof or a counterexample.
6) Evaluate

$$
\int_{0}^{\pi} \frac{d t}{5+4 \cos t} .
$$

7) Evaluate

$$
\int_{0}^{\infty} \frac{x \sin x}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x
$$

8) Let $a \in \mathbb{C},|a|>1$, and let $f(t)$ denote the 2π-periodic function

$$
f(t)=\frac{1}{a+e^{i t}}, \quad t \in \mathbb{R}
$$

Write $f(t)$ as a Fourier series,

$$
f(t)=\sum_{k=-\infty}^{\infty} \hat{f}(k) e^{i k t}
$$

Determine the Fourier coefficients.
Hint: Use the geometric sum formula.

