Complex Variables Spring 2008
 MS/PhD Qualifying Examination

Instruction: Complete all problems.

1) Let $f(z)=\log (z)$ denote the main branch of the complex logarithm, which is defined and holomorphic in

$$
\mathbb{C} \backslash(-\infty, 0] .
$$

In which domain is the function

$$
g(z)=\log (\log (z))
$$

holomorphic?
2) Let

$$
U=\{z \in \mathbb{C}: 0<|z|<1\}
$$

denote the open unit disk with the origin removed and let f denote a holomorphic function on U which has a pole of order three at the origin. Prove or disprove the following statements:
a) There is a constant $C>0$ with

$$
|f(z)| \leq \frac{C}{|z|^{3}} \quad \text { for } \quad 0<|z| \leq \frac{1}{2}
$$

b) There is a constant $c>0$ with

$$
|f(z)| \geq \frac{c}{|z|^{3}} \quad \text { for } \quad 0<|z| \leq \frac{1}{2}
$$

c) There is a constant $C>0$ with

$$
|f(z)| \leq \frac{C}{|z|^{3}} \quad \text { for } \quad 0<|z|<1 .
$$

3) Let f and g be holomorphic functions defined for all z with $|z-c|<r$. Assume that

$$
g(c)=g^{\prime}(c)=0, \quad g^{\prime \prime}(c) \neq 0 .
$$

Show that the residue of the function

$$
h(z)=\frac{f(z)}{g(z)}, \quad 0<|z-c|<\varepsilon,
$$

is given by

$$
\frac{n_{1} f^{\prime}(c) g^{\prime \prime}(c)+n_{2} f(c) g^{\prime \prime \prime}(c)}{n_{3}\left(g^{\prime \prime}(c)\right)^{2}}
$$

where n_{1}, n_{2}, n_{3} are integers. Determine the integers n_{j}.
4) Evaluate

$$
\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}-2 x+2} d x
$$

5) Show that for any positive integer n all roots of

$$
(1+z)^{n}+z^{n}=0
$$

lie on the line $x=-\frac{1}{2}$.
6) Let

$$
f(0)=0 \quad \text { and } \quad f(x+i y)=u(x, y)+i v(x, y) \quad \text { for } \quad z=x+i y \neq 0
$$

where

$$
u(x, y)=\frac{x^{3}-y^{3}}{x^{2}+y^{2}}, \quad v(x, y)=\frac{x^{3}+y^{3}}{x^{2}+y^{2}}
$$

a) Are the Cauchy-Riemann equations satisfied at $z=0$?
b) Does the complex derivative $f^{\prime}(0)$ exist?
7) Evaluate

$$
\int_{0}^{2 \pi} \frac{d t}{5+4 \sin t}
$$

8) Determine the number of roots of the equation

$$
z^{3}-z^{2}+3 z+5=0
$$

in the open right half-plane $(\operatorname{Re} z>0)$.

