Complex Analysis Qualifying Examination

January 2009
Instructions: Please do the eight problems listed below. You may choose to answer the problems in any order. However, to help us in grading your exam please make sure to:
i. Start each question on a new sheet of paper.
ii. Write only on one side of each sheet of paper.
iii. Number each page and write the last four digits of your UNM ID \# on each page.

1. (a) Show that $f(z)=-\frac{i}{2 \cos z}$ and $g(z)=\frac{\sin z}{1+e^{i 2 z}}$ have the same poles and principal parts.
(b) Find an entire function $\varphi(z)$ such that $\varphi(z)=-\left[\frac{i}{2 \cos z}+\frac{\sin z}{1+e^{i 2 z}}\right]$.
2. Find the Laurent expansion for $f(z)=\frac{z^{3}+2 z-1}{z^{2}-1}$ valid in the domain D, $D=\{z \in \mathbb{C}:|z|>1\}$.
3. (a) If f is analytic on $\mathbb{C}^{*}=\mathbb{C} \cup\{\infty\}$, show that f is constant.
(b) If f is analytic on \mathbb{C} and satisfies $\max \{|f(z)|:|z|=r\} \leq M r^{n}$ for a fixed $M>0, n>0$, and a sequence of values $r=r_{k}$, with $r_{k} \rightarrow \infty$ as $k \rightarrow \infty$, show that f is a polynomial of degree less or equal to n.
4. (a) State Rouche's theorem.
(b) If $f(z)=4 z^{4}+13 z^{2}+3$, find the number of zeros of $f(z)$ inside the circle $\{z:|z|=1\}$ and the number of zeros inside the annulus $\{z: 1<|z|<2\}$.
5. Use the residue theorem to evaluate

$$
\int_{0}^{2 \pi} \frac{d \theta}{4+3 \cos \theta}
$$

6. Prove in complete detail: If f is analytic on an open set containing $\{z: \operatorname{Im} z \leq 0\}$ except for a finite number of singularities (none on the real axis), and $\lim _{z \rightarrow \infty} f(z)=0$ (with $\operatorname{Im} z \leq 0$), and if $m<0$, then

$$
\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) e^{i m x} d x=-2 \pi i \sum_{k} \operatorname{res}\left(f(z) e^{i m z}, z=z_{k}\right)
$$

where z_{k} are the singularities of f in the lower half-plane.
7. (a) Where is the function $w=\cos z$ conformal?
(b) Find the image of the domain $D=\{z=x+i y$: $-\pi / 2<x<\pi / 2,0<y<\infty\}$ under the $\operatorname{map} w=\cos z$.
8. Assume that $\left\{f_{n}(z)\right\}_{n=1}^{\infty}$ is a sequence of entire functions that converges to $f(z)$ uniformly on compact sets. Prove that $f(z)$ is entire and that for any $z_{0} \in \mathbb{C}$ and $k \in \mathbb{N}, f_{n}^{(k)}\left(z_{0}\right) \rightarrow f^{(k)}\left(z_{0}\right)$ as $n \rightarrow \infty$

