Complex Analysis Qualifying Examination

January 2009

Instructions: Please do the **eight** problems listed below. You may choose to answer the problems in any order. However, to help us in grading your exam please make sure to:

- i. Start each question on a new sheet of paper.
- ii. Write only on one side of each sheet of paper.
- iii. Number each page and write the last four digits of your \mathbf{UNM} \mathbf{ID} # on each page.
 - 1. (a) Show that $f(z) = -\frac{i}{2\cos z}$ and $g(z) = \frac{\sin z}{1 + e^{i2z}}$ have the same poles and principal parts.
 - (b) Find an entire function $\varphi(z)$ such that $\varphi(z) = -\left[\frac{i}{2\cos z} + \frac{\sin z}{1 + e^{i2z}}\right]$.
 - 2. Find the Laurent expansion for $f(z) = \frac{z^3 + 2z 1}{z^2 1}$ valid in the domain D, $D = \{z \in \mathbb{C} : |z| > 1\}.$
 - 3. (a) If f is analytic on $\mathbb{C}^* = \mathbb{C} \cup \{\infty\}$, show that f is constant.
 - (b) If f is analytic on \mathbb{C} and satisfies $\max\{|f(z)|:|z|=r\}\leq Mr^n$ for a fixed $M>0,\ n>0$, and a sequence of values $r=r_k$, with $r_k\to\infty$ as $k\to\infty$, show that f is a polynomial of degree less or equal to n.
 - 4. (a) State Rouche's theorem.
 - (b) If $f(z) = 4z^4 + 13z^2 + 3$, find the number of zeros of f(z) inside the circle $\{z : |z| = 1\}$ and the number of zeros inside the annulus $\{z : 1 < |z| < 2\}$.
 - 5. Use the residue theorem to evaluate

$$\int_0^{2\pi} \frac{d\theta}{4 + 3\cos\theta}.$$

6. Prove in complete detail: If f is analytic on an open set containing $\{z : \text{Im } z \leq 0\}$ except for a finite number of singularities (none on the real axis), and $\lim_{z \to \infty} f(z) = 0$ (with $\text{Im } z \leq 0$), and if m < 0, then

$$\lim_{R \to \infty} \int_{-R}^{R} f(x)e^{imx} dx = -2\pi i \sum_{k} \operatorname{res} (f(z)e^{imz}, z = z_k)$$

where z_k are the singularities of f in the lower half-plane.

- 7. (a) Where is the function $w = \cos z$ conformal?
 - (b) Find the image of the domain $D = \{z = x + iy : -\pi/2 < x < \pi/2, 0 < y < \infty\}$ under the map $w = \cos z$.
- 8. Assume that $\{f_n(z)\}_{n=1}^{\infty}$ is a sequence of entire functions that converges to f(z) uniformly on compact sets. Prove that f(z) is entire and that for any $z_0 \in \mathbb{C}$ and $k \in \mathbb{N}$, $f_n^{(k)}(z_0) \to f^{(k)}(z_0)$ as $n \to \infty$

1