COMPLEX ANALYSIS QUALIFYING EXAM JANUARY 9, 2020

Department of Mathematics and Statistics University of New Mexico

Instructions: At the top of each page you use, write the secret code that you shared with Ana and label all problems. Complete all 8 problems to get full credit. Start each problem on a new page and number the pages. Use only one side of each sheet. Clear and concise answer with good justification will improve your score.

1. Evaluate the integral:

$$I = \int_{0}^{2} \frac{\sqrt{x(2-x)}}{3-x} \mathrm{d}x.$$

2. Find a conformal map from the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ to the strip

$$\{w \in \mathbb{C} : 0 < \operatorname{Im} w < \pi\}.$$

3. Let n be a positive integer. Find all entire functions f(z) for which there exists positive constants M, R such that

$$|f(z)| \ge M|z|^n$$
, whenever $|z| > R$.

- 4. Suppose f is analytic on the disk D(0,R) about the origin with radius R > 1 and that |f(z)| < 1 for |z| = 1. Prove that there exists a unique point z_0 in the unit disk such that $f(z_0) = z_0$.
- 5. Suppose f is an analytic function on an open set $U \subset \mathbb{C}$ with a zero of order k at a point $z_0 \in U$. Prove that there is a nonempty open disk $D(z_0, r)$ centered at z_0 and an analytic function g on $D(z_0, r)$ such that $f = g^k$ on the disk and $g'(z_0) \neq 0$.
- 6. Suppose f is a holomorphic function on $\mathbb{C} \setminus \{0\}$ which is even in that f(-z) = f(z). Prove that f admits a holomorphic antiderivative on its domain, that is, there exists F holomorphic on $\mathbb{C} \setminus \{0\}$ such that F'(z) = f(z) for all $z \neq 0$.

Hint: What can you say about the residue of f at 0?

7. Suppose u is a real-valued, nonconstant, harmonic function on the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Prove that if $z_0 \in \mathbb{D}$, then there exists $\epsilon > 0$ such that

$$(u(z_0) - \epsilon, u(z_0) + \epsilon) \subset u(\mathbb{D}),$$

that is, the image of u contains an open interval about $u(z_0)$. (This of course establishes that $u(\mathbb{D})$ is an open set.)

8. Prove that if f is a nonconstant entire function and $b^2 \neq 4ac$, then the function $g(z) := af^2(z) + bf(z) + c$ has a zero.