COMPLEX ANALYSIS QUALIFYING EXAM JANUARY 7, 2022

Instructions: At the top of each page you use, write the secret code that you shared with Ana and label all problems. Complete all 8 problems to get full credit. Start each problem on a new page and scan your solutions in numerical order. Clear and concise answers with good justifications will improve your score.

In what follows, the unit disk $\{z \in \mathbb{C}:|z|<1\}$ is denoted by \mathbb{D}.

1. Evaluate the improper integral

$$
I=\int_{0}^{+\infty} \frac{x^{2} \cos x}{\left(x^{2}+1\right)\left(x^{2}+9\right)} \mathrm{d} x
$$

Explain all steps carefully (show contours, introduce branches, etc.).
2. Find a conformal map from \mathbb{D} to the open set $\Omega=\left\{z \in \mathbb{C}: 0<\arg (z)<\frac{3 \pi}{2}\right\}$.
3. Suppose $f(z)$ is an analytic function on the unit disk \mathbb{D} and that there exists a sequence of points $z_{n} \in \mathbb{D}$ such that $\left|f\left(z_{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$. Prove that the radius of convergence of the power series for f about the origin is equal to 1 .
4. Suppose that f is holomorphic on $\mathbb{C} \backslash\{0\}$ and that $f(n)=(-1)^{n}$ for each positive integer n. Prove that $\inf _{z \neq 0}|f(z)|=0$.
5. Suppose α is a complex number with $|\alpha|>5$ and let $p(z)=3+\alpha z+2 z^{4}$. How many zeros (including any multiplicity) does the polynomial $p(z)$ have in \mathbb{D} ? Fully justify your answer.
6. Let $\Omega \subset \mathbb{C}$ be open and simply connected and let $u: \Omega \rightarrow \mathbb{R}$ be harmonic on Ω. Let

$$
A:=\left\{z \in \Omega: \frac{\partial u}{\partial x}(z)=\frac{\partial u}{\partial y}(z)=0\right\}
$$

be the set of points where the gradient of u vanishes. If A has an accumulation point in Ω, is it true that u is a constant? Fully justify your answer.
7. Find all entire functions $f(z)$ which are analytic and bounded on the upper half plane $U=\{z: \operatorname{Im} z>0\}$ and real-valued on $\operatorname{Im} z=0$ (the real axis).
8. Suppose f is a holomorphic function on the unit disk \mathbb{D} and that $|f(z)|<1$ for all $z \in \mathbb{D}$. Show that if f has a zero of order 2 at the origin, then $|f(z)| \leq|z|^{2}$ for all $z \in \mathbb{D}$.

