COMPLEX ANALYSIS QUALIFYING EXAM JANUARY 7, 2022

Instructions: At the top of each page you use, write the secret code that you shared with Ana and label all problems. Complete all 8 problems to get full credit. Start each problem on a new page and scan your solutions in numerical order. Clear and concise answers with good justifications will improve your score.

In what follows, the unit disk $\{z \in \mathbb{C} : |z| < 1\}$ is denoted by \mathbb{D} .

1. Evaluate the improper integral

$$I = \int_{0}^{+\infty} \frac{x^2 \cos x}{(x^2 + 1)(x^2 + 9)} dx.$$

Explain all steps carefully (show contours, introduce branches, etc.).

- 2. Find a conformal map from \mathbb{D} to the open set $\Omega = \{z \in \mathbb{C} : 0 < \arg(z) < \frac{3\pi}{2}\}.$
- 3. Suppose f(z) is an analytic function on the unit disk \mathbb{D} and that there exists a sequence of points $z_n \in \mathbb{D}$ such that $|f(z_n)| \to \infty$ as $n \to \infty$. Prove that the radius of convergence of the power series for f about the origin is equal to 1.
- 4. Suppose that f is holomorphic on $\mathbb{C} \setminus \{0\}$ and that $f(n) = (-1)^n$ for each positive integer n. Prove that $\inf_{z\neq 0} |f(z)| = 0$.
- 5. Suppose α is a complex number with $|\alpha| > 5$ and let $p(z) = 3 + \alpha z + 2z^4$. How many zeros (including any multiplicity) does the polynomial p(z) have in \mathbb{D} ? Fully justify your answer.
- 6. Let $\Omega \subset \mathbb{C}$ be open and simply connected and let $u:\Omega \to \mathbb{R}$ be harmonic on Ω . Let

$$A := \left\{ z \in \Omega : \frac{\partial u}{\partial x}(z) = \frac{\partial u}{\partial y}(z) = 0 \right\}$$

be the set of points where the gradient of u vanishes. If A has an accumulation point in Ω , is it true that u is a constant? Fully justify your answer.

- 7. Find all entire functions f(z) which are analytic and bounded on the upper half plane $U = \{z : \text{Im } z > 0\}$ and real-valued on Im z = 0 (the real axis).
- 8. Suppose f is a holomorphic function on the unit disk \mathbb{D} and that |f(z)| < 1 for all $z \in \mathbb{D}$. Show that if f has a zero of order 2 at the origin, then $|f(z)| \leq |z|^2$ for all $z \in \mathbb{D}$.