January 1994

ODE/PDE Exam

ID Number:

Part 1: Answer two of the five questions given below.

Ph.D students: At most one question can be of the M.A. type.

Only two questions will be graded. Write your chosen question numbers here:

(M.A.)1. Characterize the type of the critical points as a function of α for the system,

$$\frac{dx}{dt} = (1-x^2)y,$$

$$\frac{dy}{dt} = -x - \alpha y.$$

(M.A.)2. Construct the total energy function, find and classify the equilibrium points, derive and solve the corresponding linear equations, and sketch a global phase plane portrait.

$$\frac{d^2x}{dt^2} + x + \frac{3}{x-4} = 0.$$

3.(a) Show that if (x_0, y_0) is a local minimum of V(x, y), then $F(x, y) = V(x, y) - V(x_0, y_0)$ is a Liapunov function for the gradient flow,

$$egin{array}{lll} rac{dx}{dt} & = & -rac{\partial V(x,y)}{\partial x}, \ rac{dy}{dt} & = & -rac{\partial V(x,y)}{\partial y}, \end{array}$$

and that this guarantees stability of (x_0, y_0) .

(b) Using the Liapunov stability theorem [State it.], can you determine if the origin is asymptotically stable or only that it is stable for the gradient flow,

$$\frac{dx}{dt} = 4xy - 4x^3,$$

$$\frac{dy}{dt} = 2x^2 - 2y,$$

$$\frac{dy}{dt} = 2x^2 - 2y,$$

ODE/PDE

01/94

- 4. Let A be a 2×2 matrix with scalar entries. Then (by Cayley- Hamilton) A satisfies its characteristic equation, i.e. if $p(\lambda) = det(A \lambda I)$, then p(A) = 0.
- (a) Show that $Le^{tA} = 0$, where the differential operator L is defined by $L = p(\frac{d}{dt})$.
- (b) Assume that the following is valid [It is.].

$$e^{tA} = v(t)I + w(t)A,$$
 $\frac{d}{dt}e^{tA} = \frac{d}{dt}v(t)I + \frac{d}{dt}w(t)A.$

Show that Lv(t) = 0, and Lw(t) = 0. Find $v(0), w(0), \frac{d}{dt}v(0), \frac{d}{dt}w(0)$.

(c) Use this information to compute e^{tA} , where

$$A = \left(\begin{array}{cc} 3 & -4 \\ 1 & -1 \end{array}\right).$$

5. Consider the system

$$\frac{dx}{dt} = x(y - y^2),$$

$$\frac{dy}{dt} = x^2 - y.$$

- (a) Find the critical points and determine their stability.
- (b) Show that if x(0) > 0, then x(t) > 0 for all $t \ge 0$.
- (c) What is $\lim_{t\to\infty}(x(t),y(t))$ if $x(0)\geq 0$?

(Either sketch the trajectories of the phase plane portrait or argue based on your previous work.)

-> Part 2: Answer two of the five questions given below.

Ph.D students: At most one question can be of the M.A. type.

Only two questions will be graded. Write your chosen question numbers here:

(M.A.)1(a). Find the earliest time at which a singularity develops for the equation

$$u_t + uu_x = 0$$
, $-\infty < x < \infty$, $0 < t$, $u(x, 0) = \sin x$.

(M.A.)1(b). Find the solution and domain of existence for

$$xu_x + (x+y)u_y = 1,$$

with the boundary condition, u(1, y) = y, 0 < y < 1.

(M.A.)2. Find the solution to the wave equation,

$$y_{tt} = c^2 y_{xx}, \quad 0 < t, \quad 0 < x,$$

that satisfies the boundary condition, y(0,t) = s(t), and the initial conditions, y(x,0) = 0, $y_t(x,0) = g(x)$.

Hint: Try y(x,t) = f(x-ct) + h(x+ct).

3. Let $\Omega = G \times (0,T)$, where G is a bounded smooth domain in \mathbb{R}^3 . Show that there is a unique solution to

$$U_t = \nabla \cdot (\kappa(\underline{x}) \nabla U) - c(\underline{x})U, \ (\underline{x}, t) \varepsilon \Omega$$

with U = f on $\partial \Omega$. The functions f, κ, c are smooth and c is positive.

4(a). Show that a fundamental solution of the differential operator, $\Delta + \frac{\omega^2}{c^2}$, Δ , the Laplacian in \mathbb{R}^3 , is

$$G(\underline{x},\underline{\zeta})=-rac{e^{-irac{\omega}{c}r}}{4\pi r},$$

where $r = |\underline{x} - \underline{\zeta}|$.

4(b). Using (a), find the solution to

$$(\Delta + \frac{\omega^2}{c^2})U(\underline{x}) = f(\underline{x}),$$

in a smooth bounded region Ω with U=0 on $\partial\Omega$.

5. Prove: If the functions w_n are harmonic in a bounded domain G in \mathbb{R}^2 , continuous in \overline{G} , then the sequence $\{w_n\}$ is uniformly convergent throughout \overline{G} , and the limit function is harmonic in G.