August 1994 ODE/PDE EXAM ID NUMBER:

Part 1. Solve two of the four problems given below. Ph.D students: At most one question can be of the M.A. type.
Only two problems will be graded. Write your problem numbers here:

1. (M.A.) Consider the system $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}(t)$ with $\mathbf{x}(t), \mathbf{f}(t)$ in \mathbf{R}^{n}, and $\mathbf{f}(t)=\mathbf{f}(t+T)$. All of the eigenvalues of the constant $n \times n$ matrix A satisfy the constraint, $\operatorname{Re}(\lambda)<0$.
a. Write down a formula for a general solution.
b. Write down a formula for a T-periodic solution $\mathbf{h}(t)$ and show that it is unique.
c. Show that $\lim _{t \rightarrow \infty} \mathbf{x}(t)=\mathbf{h}(t)$.
2. (M.A.) Let A be an arbitrary 2×2 matrix with real entries. Then (by Cayley-Hamilton) A satisfies its characteristic equation, i.e., if $p(\lambda)=\operatorname{det}(A-\lambda I)$, then $p(A)=0$.
a. Show that $L e^{t A}=0$, where the differential operator L is defined by $L=p\left(\frac{d}{d t}\right)$.
b. Assume that the following is valid. (The functions $v(t)$ and $w(t)$ are real-valued.)

$$
\begin{aligned}
e^{t A} & =v(t) I+w(t) A \\
\frac{d}{d t} e^{t A} & =\frac{d v}{d t}(t) I+\frac{d w}{d t}(t) A .
\end{aligned}
$$

Show that $L v(t)=0$ and $L w(t)=0$. Find $v(0), w(0) v^{\prime}(0) w^{\prime}(0)$.
c. Use this information to construct $e^{t A}$ where

$$
A=\left(\begin{array}{ll}
2 & 0 \\
1 & 3
\end{array}\right) .
$$

3. Show that

$$
\begin{aligned}
& \frac{d x}{d t}=F(x, y)=-2 x-3 y-x y^{2} \\
& \frac{d y}{d t}=G(x, y)=y+x^{2}-x^{2} y
\end{aligned}
$$

has no periodic solutions that are not constant.
Hint: Use Green's Theorem to study

$$
\oint_{C}[F d y-G d x]
$$

on a smooth closed curve C.
4.
a. Show that

$$
\mathcal{H}=\frac{1}{2} y^{2}+\frac{1}{2} v^{2}-\frac{1}{2} \lambda^{2} x^{2}-\frac{1}{2} \mu^{2} u^{2}+\frac{1}{2} u x^{2}
$$

is a Hamiltonian for

$$
\begin{aligned}
& \frac{d x}{d t}=y, \frac{d y}{d t}=\lambda^{2} x-u x \\
& \frac{d u}{d t}=v, \frac{d v}{d t}=\mu^{2} u-\frac{1}{2} x^{2}
\end{aligned}
$$

b. Show that for $\lambda^{2}=\mu^{2}$, the above system can be reduced to a twodimension system. $\{$ Hint: Set $u=\alpha x, v=\alpha y$ with a suitable α.\}
c. Find a Hamiltonian for the reduced system.
d. Discuss the critical points and sketch a phase plane portrait of the reduced system.

August 1994 ODE/PDE EXAM

Part 2. Solve two of the four problems given below.
Ph.D students: At most one question can be of the M.A. type. Only two problems will be graded. Write your problem numbers here:

1. (M.A.)
a. Classify the PDE,

$$
u_{x x}+\alpha u_{y y}+\beta u_{y}=\lambda^{2} u,
$$

for all values of α and β.
b Solve for $u(x, y)$ with $\alpha=\beta=\lambda^{2}=0$ on $0<x<1$.
Is there a maximum principle in this case? Justify your answer with the solution you obtained.
c Set $\beta=0$ and $\alpha=-c^{2}$. Solve for

$$
u=f(s)=\sum_{n=0}^{\infty} a_{n} s^{n}
$$

where $s=y^{2}-c^{2} x^{2}$. (First find an equation for $f\left(y^{2}-c^{2} x^{2}\right.$.)
2. (M.A.) State and prove a theorem regarding the attainment of maxima and minima by solutions to the I.B.V.P.

$$
\begin{aligned}
u_{t} & =u_{x x}, \quad 0<x<L, \quad t>0 \\
u(t, 0) & =u(t, L)=0, t>0 \\
u(0, x) & =f(x) \varepsilon C^{2}(0, L)
\end{aligned}
$$

3.

a. Show that

$$
u(x, y)=\frac{1-x^{2}-y^{2}}{1-2 x+x^{2}+y^{2}}
$$

is harmonic for $x^{2}+y^{2}<1$.
b. Is it harmonic for $x^{2}+y^{2}<a$ if $a>1$? Explain.
c. Prove that

$$
\frac{a-r}{a+r} \leq u(x, y) \leq \frac{a+r}{a-r}
$$

for $r<a$ is true for all $a<1$, where $r=\sqrt{x^{2}+y^{2}}$.
d. Prove that

$$
\frac{1-a}{1+a} \leq u(x, y) \leq \frac{1+a}{1-a}
$$

for $\sqrt{x^{2}+y^{2}} \leq a$ is true for all $a<1$.
4. Consider the following equation that arises in the study of elasticity,

$$
\rho \mathbf{u}_{t t}=(\lambda+2 \mu) \nabla(\nabla \cdot \mathbf{u})-\mu \nabla \times(\nabla \times \mathbf{u})+\mathbf{F}(\mathbf{x}) ; \quad \mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)
$$ in $\Omega \subset \mathbf{R}^{3}$ with $\mathbf{u}=\mathbf{0}$ on the boundary of Ω. (ρ, λ, μ are constants.)

a. Show that if $\mathbf{F}=0$, then

$$
E(t)=\int_{\Omega} \frac{1}{2}\left[\rho\left|\mathbf{u}_{t}\right|^{2}+(\lambda+\mu)(\nabla \cdot \mathbf{u})^{2}+\mu \sum_{i=1}^{3}\left|\nabla u_{i}\right|^{2}\right] d \mathbf{x}
$$

is a constant.
b. Assume $\mathbf{F} \neq \mathbf{0}$, and set $\mathbf{F}=\nabla U+\nabla \times \theta$, and $\mathbf{u}=\nabla \phi+\nabla \times \mathbf{A}$. Find the equations for ϕ and \mathbf{A}.
c. Taking $\phi=\phi_{0}, \mathbf{A}=\mathbf{A}_{0}$ (constants) on $\partial \Omega$, find the Lagrangian for the (ϕ, \mathbf{A}) equations in b .

