# ODE/PDE Qualifying Exam 

## January 1995 <br> Fall 199

Name:
Part I: Answer 2 of the 4 questions given below.

## 1. Consider the system of ODE's

$$
\begin{aligned}
& x^{\prime}=x+y^{2} \\
& y^{\prime}=y-x^{2}
\end{aligned}
$$

Find all the critical points and classify them. Also, solve the corresponding linearized equations around each critical point and sketch their local phase portrait.
2. Consider the initial value problem

$$
\begin{array}{cc}
x^{\prime}=f(x, y), & x(0)=x_{0}, \\
y^{\prime}=g(x, y), & y(0)=y_{0}
\end{array}
$$

Let $C=\{(x(t), y(t)) \mid t \geq 0\}$ be the positive semi-orbit for the initial value problem. Assume that $C$ is bounded and define $C^{\prime}$ as the set of points $p$ in the plane for which there is a monotonic increasing sequence $t_{n}$ with $t_{n} \rightarrow \infty$, and $\left(x\left(t_{n}\right), y\left(t_{n}\right)\right) \rightarrow p$ as $t_{n} \rightarrow \infty$.
(a) Show that $\lim _{t \rightarrow \infty} \operatorname{dist}\left((x(t), y(t)), C^{\prime}\right)=0$, where $\operatorname{dist}(p, S)$ denotes the distance from the point $p$ to the set $S$.
(b) Show that if $C^{\prime}=\{p\}$, then $\lim _{t \rightarrow \infty}(x(t), y(t))=p$. Does this imply that $p$ is a stable equilibrium point? Prove it or give a counterexample.

## 3. Consider

$$
x^{\prime \prime}+2 \alpha x^{\prime}+g(x)=0
$$

with $\alpha>0, g(x)$ smooth and satisfying the conditions $x g(x) \geq 0$ in some open set containing the origin, and $g(0)=0$. Show that $x(t)=0$ is an asymptotically stable equilibrium by using the phase space function

$$
f\left(x, x^{\prime}\right)=\frac{1}{2}\left(x^{\prime}+\alpha x\right)^{2}+\frac{1}{2} \alpha^{2} x^{2}+\int_{0}^{x} g(s) d s
$$

4. (a) Let $r(t)$ be continuous for $0 \leq t-t_{0} \leq \gamma$ and satisfy

$$
0 \leq r(t) \leq \epsilon+\delta \int_{t_{0}}^{t} r(s) d s
$$

for some non-negative constants $\epsilon$ and $\delta$. Show that

$$
0 \leq r(t) \leq \epsilon \exp \left[\delta\left(t-t_{0}\right)\right]
$$

for $0 \leq t-t_{0} \leq \gamma$.
(b) Use the Gronwall inequality from (a) to prove uniqueness of solutions to the initial value
problem problem

$$
x^{\prime}=f(x, t), \quad x\left(t_{0}\right)=x_{0} .
$$

State the necessary assumptions on $f$.

Part II: Answer 2 of the 4 questions given below.

1. Solve the mixed initial-boundary-value problem

$$
\begin{gathered}
u_{t}+(1+2 t) u_{x}=u, \quad x>0, t>0 \\
u(x, 0)=0, \quad x>0 \\
u(0, t)=t, \quad t>0
\end{gathered}
$$

In particular, find the characteristics and sketch them in the first quadrant of the $x t$-plane.
2. Solve the mixed initial-boundary-value problem

$$
\begin{gathered}
u_{t}=u_{x x}, \quad 0<x<1, t>0 \\
u(x, 0)=0, \quad 0<x<1 \\
u(0, t)=0, \quad t>0 \\
u(1, t)=t, \quad t>0
\end{gathered}
$$

3. Consider the mixed initial-boundary-value problem

$$
\begin{gathered}
u_{t t}=u_{x x}-u_{t}, \quad 0<x<\pi, t>0 \\
u(x, 0)=f(x), \quad 0<x<\pi \\
u_{t}(x, 0)=g(x), \quad 0<x<\pi, \\
u_{x}(0, t)=0, \quad t>0, \\
u(\pi, t)=0, \quad t>0 .
\end{gathered}
$$

(a) Let

$$
E(t)=\frac{1}{2} \int_{0}^{\pi}\left[\left(u_{t}\right)^{2}+\left(u_{x}\right)^{2}\right] d x
$$

Show that $E(t) \leq E(0)$ for all $t>0$.
(b) Solve the initial-boundary-value problem, if the initial data is given by $f(x)=\cos \left(\frac{x}{2}\right)$, and $g(x)=0$. Show that $E(t) \rightarrow 0$ as $t \rightarrow \infty$.
4. Consider the boundary-value problem for $u$

$$
\begin{aligned}
\Delta u=c u, & x \in \Omega \\
\left.u\right|_{\partial \Omega} & =f, \quad x \in \partial \Omega
\end{aligned}
$$

where $\Omega$ is a bounded domain and $c$ is a positive constant.
(a) Show that if $f \leq 0$ in $\partial \Omega$, then $u \leq 0$ in $\Omega$, and if $f \geq 0$ in $\partial \Omega$, then $u \geq 0$ in $\Omega$.
(b) Prove that if the solution of the boundary-value problem is unique.
(c) Is (a) still true if $c<0$ ? Prove it or give a counterexample.

Part II: Answer 2 of the 4 questions given below.

1. Solve the mixed initial-boundary-value problem

$$
\begin{gathered}
u_{t}+(1+2 t) u_{x}=u, \quad x>0, t>0 \\
u(x, 0)=0, \quad x>0 \\
u(0, t)=t, \quad t>0
\end{gathered}
$$

In particular, find the characteristics and sketch them in the first quadrant of the $x t$-plane.
2. Solve the mixed initial-boundary-value problem

$$
\begin{gathered}
u_{t}=u_{x x}, \quad 0<x<1, t>0 \\
u(x, 0)=0, \quad 0<x<1 \\
u(0, t)=0, \quad t>0 \\
u(1, t)=t, \quad t>0
\end{gathered}
$$

3. Consider the mixed initial-boundary-value problem

$$
\begin{gathered}
u_{t t}=u_{x x}-u_{t}, \quad 0<x<\pi, t>0 \\
u(x, 0)=f(x), \quad 0<x<\pi \\
u_{t}(x, 0)=g(x), \quad 0<x<\pi \\
u_{x}(0, t)=0, \quad t>0, \\
u(\pi, t)=0, \quad t>0 .
\end{gathered}
$$

(a) Let

$$
E(t)=\frac{1}{2} \int_{0}^{\pi}\left[\left(u_{t}\right)^{2}+\left(u_{x}\right)^{2}\right] d x
$$

Show that $E(t) \leq E(0)$ for all $t>0$.
(b) Solve the initial-boundary-value problem, if the initial data is given by $f(x)=\cos \left(\frac{x}{2}\right)$, and $g(x)=0$. Show that $E(t) \rightarrow 0$ as $t \rightarrow \infty$.
4. Consider the boundary-value problem for $u$

$$
\begin{aligned}
\Delta u=c u, & x \in \Omega \\
\left.u\right|_{\partial \Omega} & =f, \quad x \in \partial \Omega
\end{aligned}
$$

where $\Omega$ is a bounded domain and $c$ is a positive constant.
(a) Show that if $f \leq 0$ in $\partial \Omega$, then $u \leq 0$ in $\Omega$, and if $f \geq 0$ in $\partial \Omega$, then $u \geq 0$ in $\Omega$.
(b) Prove that if the solution of the boundary-value problem is unique.
(c) Is (a) still true if $c<0$ ? Prove it or give a counterexample.

# ODE/PDE Qualifying Exam 

## Janvary 1995 <br> \section*{Pa\#1094}

Name: $\qquad$
Part I: Answer 2 of the 4 questions given below.

## 1. Consider the system of ODE's

$$
\begin{aligned}
& x=x+y^{2} \\
& y^{\prime}=y-x^{2}
\end{aligned}
$$

Find all the critical points and classify them. Also, solve the corresponding linearized equations around each critical point and sketch their local phase portrait.
2. Consider the initial value problem

$$
\begin{array}{ll}
x^{\prime}=f(x, y), & x(0)=x_{0}, \\
y^{\prime}=g(x, y), & y(0)=y_{0}
\end{array}
$$

Let $C=\{(x(t), y(t)) \mid t \geq 0\}$ be the positive semi-orbit for the initial value problem. Assume that $C$ is bounded and define $C^{\prime}$ as the set of points $p$ in the plane for which there is a monotonic increasing sequence $t_{n}$ with $t_{n} \rightarrow \infty$, and $\left(x\left(t_{n}\right), y\left(t_{n}\right)\right) \rightarrow p$ as $t_{n} \rightarrow \infty$.
(a) Show that $\lim _{t \rightarrow \infty} \operatorname{dist}\left((x(t), y(t)), C^{\prime}\right)=0$, where $\operatorname{dist}(p, S)$ denotes the distance from the point $p$ to the set $S$.
(b) Show that if $C^{\prime}=\{p\}$, then $\lim _{t \rightarrow \infty}(x(t), y(t))=p$. Does this imply that $p$ is a stable equilibrium point? Prove it or give a counterexample.

## 3. Consider

$$
x^{\prime \prime}+2 \alpha x^{\prime}+g(x)=0
$$

with $\alpha>0, g(x)$ smooth and satisfying the conditions $x g(x) \geq 0$ in some open set containing the origin, and $g(0)=0$. Show that $x(t)=0$ is an asymptotically stable equilibrium by using the phase space function

$$
f\left(x, x^{\prime}\right)=\frac{1}{2}\left(x^{\prime}+\alpha x\right)^{2}+\frac{1}{2} \alpha^{2} x^{2}+\int_{0}^{x} g(s) d s
$$

4. (a) Let $r(t)$ be continuous for $0 \leq t-t_{0} \leq \gamma$ and satisfy

$$
0 \leq r(t) \leq \epsilon+\delta \int_{t_{0}}^{t} r(s) d s
$$

for some non-negative constants $\epsilon$ and $\delta$. Show that

$$
0 \leq r(t) \leq \epsilon \exp \left[\delta\left(t-t_{0}\right)\right]
$$

for $0 \leq t-t_{0} \leq \gamma$.
(b) Use the Gronwall inequality from (a) to prove uniqueness of solutions to the initial value problem

$$
x^{\prime}=f(x, t), \quad x\left(t_{0}\right)=x_{0}
$$

State the necessary assumptions on $f$.

