ODE/PDE Preliminary Exam, Fall 1998

Note: All the questions must be answered.

PART 1: ODEs

1. Consider $\mathbf{x}^{\prime}=A(t) \mathbf{x}$, where $A(t)$ is a continuous 2×2 matrix with $A(t+1)=A(t)$. Let $\Phi(t)$ be the fundamental matrix solution, and assume that trace $[\Phi(1)]=2 \alpha$, where α is a real constant. Show that if \int_{0}^{1} trace $[A(t)] d t=-\ln 2$ and if $|\alpha|<3 / 4$, then all solutions approach $\mathbf{x}=\mathbf{0}$ as $t \rightarrow \infty$.
2. Consider the ODE

$$
\begin{aligned}
& x^{\prime}=\lambda x-y-x\left(4 x^{2}+7 y^{2}\right) \\
& y^{\prime}=x+\lambda y-y\left(4 x^{2}+7 y^{2}\right)
\end{aligned}
$$

Show that if $\lambda>0$, then there is at least one nonconstant periodic solution. (Hint: Write the ODE in polar coordinates)
3. Consider the linear ODE

$$
\mathbf{x}^{\prime}=A \mathbf{x}+B(t) \mathbf{x}, \quad \mathbf{x}(0)=\mathbf{x}_{0}
$$

Suppose that all of the eigenvalues of the $n \times n$ matrix A have negative real part, and that

$$
\int_{0}^{\infty}\|B(t)\| d t<\infty
$$

Show that

$$
\lim _{t \rightarrow \infty}|\mathbf{x}(t)|=0
$$

(Hint: Derive an inequality for $|\mathbf{x}(t)|$)
4. Show that $\mathbf{x}=\mathbf{0}$ is an asymptotically stable equilibrium point for the system

$$
\begin{aligned}
& x_{1}^{\prime}=-x_{2}-x_{1} x_{2}^{2}-x_{1}^{3} \\
& x_{2}^{\prime}=x_{1}-x_{1}^{2} x_{2}-x_{2}^{3} .
\end{aligned}
$$

(Hint: The function $V\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$ may prove to be useful)

PART 2: PDEs

1 Show that the solution of the nonlinear equation

$$
\begin{equation*}
u_{x}+u_{y}=u^{2} \tag{1}
\end{equation*}
$$

satisfying $u=t$ along the curve $x=t, y=-t$, becomes infinite along the hyperbola $x^{2}-y^{2}=4$

2 Solve

$$
u_{t t}-c^{2} u_{x x}=0
$$

in $x>0, t>0$, with initial conditions

$$
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x)
$$

and boundary condition $u_{t}(0, t)=\alpha u_{x}(0, t), \quad$ where α is a constant.
(b) Show that in general, no solution exists when $\alpha=-c$

3 Prove that the solution of Poisson equation,

$$
\begin{equation*}
\Delta u=f, \quad \mathbf{x} \in \Omega \tag{2}
\end{equation*}
$$

with boundary condition

$$
\frac{\partial u}{\partial n}+\alpha u=g, \quad \mathbf{x} \epsilon \partial \Omega
$$

is unique when $\alpha>0$. (Here $\frac{\partial u}{\partial n}$ refers to the normal derivative).
(b) For $\alpha=0$ show that $\int_{\Omega} f d \mathbf{x}=\int_{\partial \Omega} g d S$ is a necessary condition for the solution of the Neumann problem to exist.

