ODE Preliminary Exam
 Winter 2002

Directions: Do three out of the following four problems.

1. Consider the ODE

$$
\dot{\mathbf{x}}=A \mathbf{x}+f(t, \mathbf{x}), \quad \mathbf{x}(0)=\mathbf{x}_{0}
$$

Suppose that all of the eigenvalues of $A \in \mathbb{R}^{n \times n}$ have negative real part, that $f(t, \mathbf{x})$ is continuous, and that for any $\epsilon>0$ there is a $\delta>0$ such that

$$
|f(t, \mathbf{x})| \leq \epsilon|\mathbf{x}|, \quad|\mathbf{x}|<\delta, t \in \mathbb{R}
$$

Show that $\mathbf{x}=\mathbf{0}$ is uniformly asymptotically stable.
2. Consider the second-order equation

$$
\begin{equation*}
\ddot{x}+p(t) x=0, \quad p(t)=-2 \frac{1+\cos t}{2-\sin t} \tag{1}
\end{equation*}
$$

a. Verify that

$$
x_{1}(t)=(2-\sin t) e^{-t}
$$

is a solution.
b. Are all solutions to equation (1) bounded? Explain. (Hint: Note that $p(t+2 \pi)=p(t)$.)
3. Consider the system

$$
\begin{align*}
\dot{x} & =-x+\frac{1}{4} a y+x^{2} y \tag{2}\\
\dot{y} & =\frac{1}{2}-\frac{1}{4} a y-x^{2} y
\end{align*}
$$

where $0<a<2 \sqrt{3}-3$. Show that there is at least one nonconstant periodic solution to the system.
4. Consider the initial value problem

$$
\dot{x}=f(t, x), \quad x(0)=x_{0}
$$

where $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is smooth and satisfies

$$
|f(t, x)| \leq \phi(t)|x|, \quad \int_{0}^{+\infty} \phi(t) d t<\infty \quad(\phi(t) \geq 0)
$$

a. Show that a solution exists for all $t \geq 0$.
b. Show that every solution approaches a constant as $t \rightarrow \infty$.

PDE Preliminary Exam
 Winter 2002

Directions: Do all three of the following problems.
5. Solve

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

on the interval $x \in[-1,1]$ subject to the boundary conditions

$$
\frac{\partial u}{\partial x}(x= \pm 1, t)=0
$$

and the initial condition

$$
u(x, t=0)=\left\{\begin{array}{rr}
-1, & -1<x<0 \\
1, & 0<x<1
\end{array}\right.
$$

6. Solve Laplace's equation $\Delta u=0$ in a disk $\sqrt{x^{2}+y^{2}} \leq 1$ with Neumann boundary conditions

$$
\left.\frac{\partial u}{\partial r}\right|_{r=1}=f(\phi)
$$

where

$$
f(\phi)=\left\{\begin{array}{rc}
-\pi+2 \phi, & 0 \leq \phi \leq \pi \\
3 \pi-2 \phi, & \pi \leq \phi \leq 2 \pi
\end{array}\right.
$$

7. Find the general solution of the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}
$$

on the interval $x \in[0,+\infty)$ with boundary conditions

$$
\left.\frac{\partial u}{\partial x}\right|_{x=0}=0
$$

Find the particular solution for the given initial conditions:

$$
u(x, t=0)=\phi(x), \quad \frac{\partial u}{\partial t}(x, t=0)=\psi(x)
$$

