ODE/PDE Qualifying Exam For Summer 2002

Instruction: Complete all four problems.

1. Consider the following initial value problem for a function u(x,t),

$$u_t + (2t - x)u_x = 0, \quad u(x, 0) = \cos x,$$

where $x \in \mathbb{R}$ and $t \geq 0$.

- a) Determine the characteristic lines in the (x, t) plane.
- b) Sketch the characteristic line passing through the point (x,t) = (0,0).
- c) What is the value of u(x,t) along the characteristic determined in b)?
- d) Compute u(x,t) and check your answer.
- 2. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a smooth function with compact support. You may use that the solution of Poisson's equation

$$-\Delta u(x) = f(x), \quad x \in \mathbb{R}^3$$

is given by

$$u(x) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{f(y)}{|x-y|} dy$$
,

where

$$|z| = \sqrt{z_1^2 + z_2^2 + z_3^2}$$

denotes the Euclidean norm in \mathbb{R}^3 .

Show that there is a constant C > 0, which depends on f but not on x, with

$$|u(x)| \le \frac{C}{1+|x|}, \quad x \in \mathbb{R}^3.$$

Hint: The estimate is easy for bounded x, thus the essential difficulty is to show the stated decay of |u(x)| for large |x|.

3. Consider Newton's equation

$$x''(t) = -\frac{\partial U}{\partial x}$$

with U(x) being continuously-differentiable function of x. Prove that a) If $U(x) \geq U_0$ for some U_0 , the solution of Newton's equation can be extended for all t > 0.

- b) Find an example of U(x) unbounded from below leading to singular solutions x(t).
- 4. Consider a differential equation in \mathbb{R}^n :

$$x = F(x),$$

where $\mathbf{F}(\mathbf{x})$ is assumed Lipshitz so all the necessary theorems about existence and uniqueness of solutions apply. Let $\mathbf{x}(\mathbf{p},t)$ be the solution of this differential equation with initial condition $\mathbf{x}(\mathbf{p},t=0) = \mathbf{p}$. We define the ω -limiting set as follows. A point \mathbf{q} is in the ω -limiting set if there is an initial point \mathbf{p} and an increasing unbounded sequence of points t_n , $n = 1, 2, \ldots$:

$$0 \le t_1 < t_2 < \ldots < t_n < \ldots \qquad \lim_{n \to \infty} t_n = \infty$$

such that

$$\lim_{n\to\infty}\mathbf{x}(\mathbf{p},t_n)=\mathbf{q},$$

In other words, the ω -limit set is the set of all accumulation points of $\mathbf{x}(\mathbf{p},t)$ for $t\to\infty$.

- a) Prove that the ω -limit set is invariant and closed.
- b) Find the ω -limit set for the system

$$x' = y + f(r)x \qquad \qquad y' = -x + f(r)y,$$

where $r = \sqrt{x^2 + y^2}$ and f(r) = (r - 1)(r - 2)(r - 3). Hint Use polar coordinates.