DE Preliminary Exam

January 2004

Directions: Do all six of the following problems. Show all of your work, and justify all of your calculations.

1. Consider the ODE

$$
\dot{x}=v \times x
$$

where \times denotes the cross-product in \mathbb{R}^{3}. For each of the following scenarios, discuss the stability of $x=0$:
(a) $v \in \mathbb{R}^{3}$ is constant
(b) $v=v(t) \in \mathbb{R}^{3}$, where $v(t+2 \pi)=v(t)$ for all $t \in \mathbb{R}$.
2. Consider the initial value problem

$$
\dot{x}=(A+B(t)) x, \quad x(0)=x_{0}
$$

where

$$
A:=\left(\begin{array}{rr}
-3 & -2 \\
2 & -3
\end{array}\right), \quad B(t):=\left(\begin{array}{cc}
\mathrm{e}^{-t} & \operatorname{sech}(2 t) \\
\frac{1}{1+t^{2}} & \mathrm{e}^{-2 t}
\end{array}\right)
$$

Show that $x(t) \rightarrow 0$ as $t \rightarrow+\infty$ for each initial value x_{0}.
3. Consider the ODE

$$
\begin{aligned}
& \dot{x}=x-y-x^{3} \\
& \dot{y}=x+y-y^{3} .
\end{aligned}
$$

Show that:
(a) there is at least one nontrivial periodic solution
(b) the periodic solution found in part (a) is unique and globally attracting.
4. Consider the IVP

$$
u_{t}-(x u)_{x}=0 ; \quad u(x, 0)=u_{0}(x)
$$

where $(x, t) \in \mathbb{R} \times \mathbb{R}^{+}$.
(a) Find the characteristics through $(x, t)=\left(x_{0}, 0\right)$ and sketch them.
(b) Discuss the behavior of the solution along the characteristic through $(x, t)=\left(x_{0}, 0\right)$.
(c) Find $u(x, t)$.
5. Consider the IBVP

$$
u_{t}-u_{x x}=0 ; \quad u(x, 0)=f(x), \quad u(0, t)=u(\pi, t)=0
$$

where $(x, t) \in(0, \pi) \times \mathbb{R}^{+}$.
(a) Find a candidate for the solution of the IBVP of the form

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} b_{n}(t) \phi_{n}(x) \tag{0.1}
\end{equation*}
$$

where $\left\{\phi_{n}(x)\right\}_{n=1}^{\infty}$ is a complete set of eigenfunctions.
(b) Give sufficient conditions on f such that

$$
\lim _{N \rightarrow \infty} \sum_{n=1}^{N} f_{n} \phi_{n}(x)=f(x)
$$

where f_{n} is appropriately defined for each n.
(c) Outline a proof that equation (0.1) actually solves the IBVP using uniform convergence arguments. State any and all assumptions on f that you require.
(d) State a maximum principle for the IBVP, and show that $b_{1}(t) \phi_{1}(x)$ satisfies it.
6. Solve the IVP for the nonhomogeneous Klein-Gordon equation (KGE),

$$
E_{x x}-\kappa^{2} E-E_{t t}=S(x, t) ; \quad E(x, 0)=E_{t}(x, 0)=0
$$

as follows:
(a) Apply Duhamel's principle; that is, find the IVP satisfied by $e(x, t ; s)$ so that $E(x, t)=\int_{0}^{t} e(x, t ; s)$. (Hint: e should satisfy a homogeneous 1D KGE.)
(b) Define $f(x, y, t ; s):=\mathrm{e}^{\mathrm{i} \kappa y} e(x, t ; s)$, and show that f satisfies a homogeneous 2 D wave equation. Solve for f using the fact that the solution $u(x, t), x \in \mathbb{R}^{2}$, of the IVP

$$
u_{t t}=\Delta u ; \quad u(x, 0)=h(x), \quad u_{t}(x, 0)=g(x)
$$

is

$$
u(x, t)=\frac{1}{2 \pi} \frac{\mathrm{~d}}{\mathrm{~d} t} \iint_{|\xi|<t} \frac{h(x+\xi)}{t^{2}+|\xi|^{2}} \mathrm{~d} \xi+\frac{1}{2 \pi} \iint_{|\xi|<t} \frac{g(x+\xi)}{\sqrt{t^{2}+|\xi|^{2}}} \mathrm{~d} \xi
$$

(c) Show that

$$
e(x, t ; s)=-\frac{1}{2} \int_{-(t-s)}^{t-s} J\left(\kappa \sqrt{(t-s)^{2}-\xi_{1}^{2}}\right) S\left(x+\xi_{1}, s\right) \mathrm{d} \xi_{1}
$$

where

$$
J(x):=\int_{-1}^{1} \frac{\mathrm{e}^{\mathrm{i} x s}}{\sqrt{1-s^{2}}} \mathrm{~d} s
$$

(d) Find $u(x, t)$.

