ODE/PDE, Fall 2007

MS/PhD Qualifying Examination

1a) Let $M \in \mathbb{C}^{n \times n}$ be a constant matrix. State (without proof) necessary and sufficient conditions in terms of the eigenvalues of M which guarantee that
(i) $w(t) \rightarrow 0$ as $t \rightarrow \infty$ for every solution $w(t)$ of the system $w^{\prime}=M w$;
(ii) every solution $w(t)$ of the system $w^{\prime}=M w$ is bounded for $t \in \mathbb{R}$.
b) Let $B \in \mathbb{C}^{n \times n}$ be a constant matrix and consider the second-order system $u^{\prime \prime}=B u$. Is it possible that $u(t) \rightarrow 0$ as $t \rightarrow \infty$ for every solution $u(t)$? Under what assumptions on B is every solution $u(t)$ bounded for $t \in \mathbb{R}$? Justify your answers.
2) Consider the following two ordinary boundary value problems:

$$
u^{\prime \prime}(x)+\pi^{2} u(x)=1, \quad u(0)=u(1)=0
$$

and

$$
u^{\prime \prime}(x)+\pi^{2} u(x)=\sin (2 \pi x), \quad u(0)=u(1)=0 .
$$

One of the problems has no solution, the other has infinitely many solutions. Solve the one that has infinitely many solutions and explain. Hint: Consider the corresponding homogeneous problem $v^{\prime \prime}+\pi^{2} v=0, v(0)=v(1)=0$.
3) The beam equation is given by:

$$
\frac{\partial^{2} w}{\partial t^{2}}+\gamma^{2} \Delta^{2} w=0
$$

where Δ is the Laplacian.
a) Use Fourier transforms to formally solve the Cauchy problem for the beam equation. The Cauchy data is given by $w(x, 0)=f(x), \frac{\partial w}{\partial t}(x, 0)=g(x)$, $x \in R^{d}$.
b) Use Parseval's relation and the solution computed above to derive bounds on $\int_{R^{d}} w^{2}(x, t) d x$ anf $\int_{R^{d}}\left(\frac{\partial w}{\partial t}(x, t)\right)^{2} d x$ in terms of f and g.
c) Now consider a smooth, bounded spatial domain, $x \in \Omega \subset R^{d}$ with boundary conditions $w=0$ and $\frac{\partial w}{\partial \nu} \equiv \mathbf{n} \cdot \nabla u=0$. (Here \mathbf{n} is the outward unit normal to Ω.) Define:

$$
\mathcal{E}(t)=\frac{1}{2} \int_{\Omega}\left(\left(\frac{\partial w}{\partial t}(x, t)\right)^{2}+\gamma^{2}(\Delta w(x, t))^{2}\right) d x
$$

Prove that \mathcal{E} is constant.
d) Use the result above to prove that solutions to the initial-boundary value problem of part (c) are unique.
4) Consider the nonlinear conservation law:

$$
\frac{\partial u}{\partial t}+\frac{\partial F(u)}{\partial x}=0
$$

where $u(x, t) \in R^{n}$ and $F(u(x, t)) \in R^{n},(x, t) \in R \times(0, \infty)$.
a) Define $U\left(t ; x_{1}, x_{2}\right)=\int_{x_{1}}^{x_{2}} u(x, t) d x$. Derive a formula for $\frac{d U}{d t}$ involving only the fluxes, F, at x_{1} and x_{2}.
b) A weak solution of the conservation law satisfies:

$$
\int_{0}^{\infty} \int_{R}\left(u(x, t) \frac{\partial v}{\partial t}(x, t)+F(u(x, t)) \frac{\partial v}{\partial x}(x, t)\right) d x d t=0
$$

for all infinitely differentiable, compactly supported scalar functions $v(x, t)$. Consider the function:

$$
u(x, t)= \begin{cases}u_{L}, & x<S(t) \\ u_{R}, & x>S(t)\end{cases}
$$

Derive conditions on $\frac{d S}{d t}$ so that u is a weak solution. (The solution is called a shock wave and $\frac{d S}{d t}$ is the shock speed.)

