UNM Dept. of Mathematics and Statistics

 Ordinary \& Partial Differential Equations Qualifying ExaminationSpring 2009

Instructions: There are four (4) problems on this examination, worth 25 points each. Work all 4 problems.

1. Consider the Mathieu equation

$$
\frac{d^{2} u}{d x^{2}}+(\delta+\epsilon \cos x) u=0
$$

(a) Show that for any arbitrarily small neighborhood of the point $\left(n^{2} / 4,0\right), n=0,1,2, \ldots$ in the (δ, ϵ) (real) parameter plane one can find solutions that remain bounded as $x \rightarrow \pm \infty$ (stable solutions) as well as unbounded (unstable) solutions.
(b) Find a small- ϵ description for the curve(s) through the point $(\delta, \epsilon)=(1 / 4,0)(n=1)$ separating regions of stability from regions of instability. Assume small ϵ expansions of the form

$$
\begin{aligned}
\delta & =\frac{1}{4}+\epsilon \delta_{1}+\mathcal{O}\left(\epsilon^{2}\right) \\
u(x ; \delta, \epsilon) & =u_{0}(x)+\epsilon u_{1}(x)+\epsilon^{2} u_{2}(x)+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

Determine δ_{1}.
2. Let $A(t)$ be a continuous real valued square matrix.
(a) Show that every solution of the non autonomous linear system

$$
\mathbf{x}^{\prime}=A(t) \mathbf{x}
$$

satisfies (|.| and ||.|| are the vector and matrix 2-norms, resp.)

$$
|\mathbf{x}(t)| \leq|\mathbf{x}(0)| \exp \left[\int_{0}^{t}\|A(s)\| d s\right]
$$

Hint: use the inequality

$$
|\mathbf{x}(t)| \leq|\mathbf{x}(0)|+\int_{0}^{t}\|A(s)|\| \mathbf{x}(s)| d s
$$

(show this!) to arrive at an extension of the Gronwall lemma.
(b) Show that if $\int_{0}^{\infty}\|A(s)\| d s<\infty$ then every solution of the system in part (1) has a finite limit as t approaches infinity.
Hint: Show that part (1) implies that $|\mathbf{x}(t)|<M$ where M is some positive constant. Then show that

$$
\left|\mathbf{x}\left(t_{n}\right)-\mathbf{x}\left(\hat{t}_{n}\right)\right| \leq\left|\int_{\hat{t}_{n}}^{t_{n}}\right||A(s)|| | \mathbf{x}(s)|d s| \leq M\left|\int_{\hat{t}_{n}}^{t_{n}} \| A(s)\right||d s|
$$

so that, if t_{n} and \hat{t}_{n} are two sequences approaching infinity, and $T_{n}=\min \left(t_{n}, \hat{t}_{n}\right)$ then

$$
\left|\mathbf{x}\left(t_{n}\right)-\mathbf{x}\left(\hat{t}_{n}\right)\right| \leq M \int_{T_{n}}^{\infty}\|A(s)\| d s \rightarrow 0
$$

as $n \rightarrow \infty$ (why?). Use this to conclude that $\mathbf{x}(t)$ must have a unique limit point as $t \rightarrow \infty$ over any sequence.
3. Solve

$$
\begin{array}{r}
\frac{\partial \varphi}{\partial t}+c_{0} \frac{\partial \varphi}{\partial x}+\varphi^{2}=0, \quad-\infty<x<\infty, \quad t>0 \\
\left.\varphi(x, t)\right|_{t=0}=f(x), \quad-\infty<x<\infty
\end{array}
$$

and c_{0} is a positive constant.
4. Find the disturbance due to a harmonic point source in an infinitely long acoustic waveguide with hard walls. Thus, solve

$$
\begin{array}{rll}
\Delta u+k^{2} u=\delta(x-\xi) \delta(y-\eta) & , \quad 0<x<\infty, 0<y<b \\
u \text { outgoing at } x= \pm \infty & , \quad u=0 \text { on } y=0 \text { and } y=b .
\end{array}
$$

Here we are solving

$$
v_{x x}+v_{y y}-\frac{1}{c^{2}} v_{t t}=\delta(x-\xi) \delta(y-\eta) e^{i \omega t}
$$

with

$$
v(x, y, t)=u(x, y) e^{i \omega t}, k=\frac{\omega}{c} .
$$

Hint: let

$$
u(x, y)=\sum_{1}^{\infty} u_{n}(x) \sin \frac{n \pi y}{b} ;
$$

multiply d.e. by $\sin (n \pi y / b)$ and integrate over y from 0 to b. Then solve the resulting problem for the $u_{n}(x)$ either by Fourier transform or by constructing Green's function directly.

