UNM Dept. of Mathematics and Statistics

Ordinary \& Partial Differential Equations
Qualifying Examination
Spring 2011
Instructions: There are six (6) problems on this examination. Work all problems.

1. (15 points) Locate the equilibrium points of the following ODE system

$$
\left\{\begin{array}{l}
x^{\prime}=x\left(x^{2}+y^{2}-1\right) \\
y^{\prime}=y\left(x^{2}+y^{2}-1\right)
\end{array} .\right.
$$

Sketch the phase plane diagram, and discuss the stability properties of all equilibrium points.
2. (15 points) For the ODE system
$\left\{\begin{array}{l}x^{\prime}=X(x, y) \\ y^{\prime}=Y(x, y)\end{array}\right.$
$\underset{\partial(\rho X)}{\text { show that there are no closed paths in a simply-connected region in which }}$ $\frac{\partial(\rho X)}{\partial x}+\frac{\partial(\rho Y)}{\partial y}$
is of one sign, where $\rho(x, y)$ is any function having continuous first partial derivatives.
3. (20 points) The ODE system
$\left\{\begin{array}{l}x_{1}^{\prime}=(-\sin 2 t) x_{1}+(\cos 2 t-1) x_{2} \\ x_{2}^{\prime}=(\cos 2 t+1) x_{1}+(\sin 2 t) x_{2}\end{array}\right.$
has a fundamental matrix of normal solutions:

$$
\Phi(t)=\left(\begin{array}{cc}
e^{t}(\cos t-\sin t) & e^{-t}(\cos t+\sin t) \\
e^{t}(\cos t+\sin t) & e^{-t}(-\cos t+\sin t)
\end{array}\right)
$$

Obtain a matrix E such that $\Phi(t+\pi)=\Phi(t) E$ and find the Floquet exponents.
4. (15 points) Consider the equation

$$
y u_{x}+x u_{y}=x y^{3}
$$

with the boundary conditions $u=x^{2}$ on $y=0,1<x<2$. In what region of (x, y) space is the solution determined? What is the solution?
5. (15 points) Show that the solution to the nonlinear equation

$$
u_{x}+u_{y}=u^{2}
$$

passing through the initial curve

$$
x=t, \quad y=-t, \quad u=t
$$

becomes infinite along the hyperbola $x^{2}-y^{2}=4$.
6. (20 points) Consider a cylindrical waveguide of radius a and infinite length, with absorbing boundary conditions at the walls and a vibrating diaphragm at $z=0$ oscillating at frequency ω. Find the general solution for waves outgoing at $z= \pm \infty$. That is, solve

$$
u_{t t}=c^{2} \triangle u+\delta(z) e^{i \omega t}, 0 \leq r<a, 0 \leq \theta<2 \pi,-\infty<z<\infty
$$

with $u(a, \theta, z, t)=0$. Show that if $\omega<\omega_{0}$ there are no propagating wave solutions and find an expression for ω_{0}.
Hints: (a) Look for solution in the following form (you need to justify why it is possible to drop the dependence on θ):

$$
u(r, \theta, z, t)=R(r) Z(z) e^{i \omega t}
$$

Carefully discuss the cases $z<0$ and $z>0$ and ensure that in each case the z dependence leads to either outgoing waves or bounded behavior at infinity. Green's functions could be helpful here, but you can simply work away from $z=0$ and impose the necessary conditions on the solution at $z=0$ implied by the δ-function forcing to connect the expansions in the positive and negative half-line. Note that here we are only interested in the "particular" solution consistent with the forcing and BC, while the "outgoing-wave" condition implies that any homogeneous solution part must be set to zero.
(b) The solution of the following ODE

$$
x^{2} f^{\prime \prime}+x f^{\prime}+\left(x^{2}-m^{2}\right) f=0, m=0,1,2, \ldots
$$

which is nonsingular at $x=0$, is given by the Bessel function $J_{m}(x)$. Let the n-th non-trivial zero of the Bessel function $J_{m}(x)$ be $x_{m n}$, i.e. $J_{m}\left(x_{m n}\right)=0$ (assume that $x_{m n}>0$). The smallest zero x_{01} of the Bessel function J_{0} is given by $x_{01} \simeq 2.4048$ and $x_{m n}$ grows with increasing m, n. You can assume that all zeros of $J_{m}(x)$ are known. (c) The solution of the following ODE

$$
x^{2} f^{\prime \prime}+x f^{\prime}-\left(x^{2}+n^{2}\right) f=0, n=0,1,2, \ldots
$$

with no singularity at $x=0$, has no zeros in $0 \leq x<\infty$.

UNM Dept. of Mathematics and Statistics

Ordinary \& Partial Differential Equations
Qualifying Examination
August 2011

Instructions: There are six (6) problems on this examination. Work all problems.

1. (15 points) Locate the equilibrium points of the following ODE system

$$
\left\{\begin{array}{l}
x^{\prime}=x\left(x^{2}+y^{2}-1\right) \\
y^{\prime}=y\left(x^{2}+y^{2}-1\right)
\end{array} .\right.
$$

Sketch the phase plane diagram, and discuss the stability properties of all equilibrium points.
2. (15 points) For the ODE system
$\left\{\begin{array}{l}x^{\prime}=X(x, y) \\ y^{\prime}=Y(x, y)\end{array}\right.$
show that there are no closed paths in a simply-connected region in which
$\frac{\partial(\rho X)}{\partial x}+\frac{\partial(\rho Y)}{\partial y}$
is of one sign, where $\rho(x, y)$ is any function having continuous first partial derivatives.
3. (20 points) The ODE system
$\left\{\begin{array}{l}x_{1}^{\prime}=(-\sin 2 t) x_{1}+(\cos 2 t-1) x_{2} \\ x_{2}^{\prime}=(\cos 2 t+1) x_{1}+(\sin 2 t) x_{2}\end{array}\right.$
has a fundamental matrix of normal solutions:

$$
\Phi(t)=\left(\begin{array}{cc}
e^{t}(\cos t-\sin t) & e^{-t}(\cos t+\sin t) \\
e^{t}(\cos t+\sin t) & e^{-t}(-\cos t+\sin t)
\end{array}\right)
$$

Obtain a matrix E such that $\Phi(t+\pi)=\Phi(t) E$ and find the Floquet exponents.
4. (15 points) Consider the equation

$$
y u_{x}+x u_{y}=x y^{3}
$$

with the boundary conditions $u=x^{2}$ on $y=0,1<x<2$. In what region of (x, y) space is the solution determined? What is the solution?
5. (15 points) Show that the solution to the quasilinear equation

$$
u_{x}+u_{y}=u^{2}
$$

passing through the initial curve

$$
x=t, \quad y=-t, u=t
$$

becomes infinite along the hyperbola $x^{2}-y^{2}=4$.
6. (20 points) Consider a cylindrical waveguide of radius a and infinite length, with absorbing boundary conditions at the walls and a vibrating diaphragm at $z=0$ oscillating at frequency ω. Find the general solution for waves outgoing at $z= \pm \infty$. That is, solve

$$
u_{t t}=c^{2} \Delta u+\delta(z) e^{i \omega t} \quad, 0 \leq r<a \quad, \quad 0 \leq \theta<2 \pi,-\infty<z<\infty,
$$

with $u(a, \theta, z, t)=0$. Show that if $\omega<\omega_{0}$ there are no propagating wave solutions and find an expression for ω_{0}.
Hints: (a) Look for solution in the following form (you need to justify why it is possible to drop the dependence on θ):

$$
u(r, \theta, z, t)=R(r) Z(z) e^{i \omega t}
$$

Carefully discuss the cases $z<0$ and $z>0$ and ensure that in each case the z dependence leads to either outgoing waves or bounded behavior at infinity. Green's functions could be helpful here, but you can simply work away from $z=0$ and impose the necessary conditions on the solution at $z=0$ implied by the δ-function forcing to connect the expansions in the positive and negative half-line. Note that here we are only interested in the "particular" solution consistent with the forcing and BC , while the "outgoing-wave" condition implies that any homogeneous solution part must be set to zero.
(b) The solution of the following ODE

$$
x^{2} f^{\prime \prime}+x f^{\prime}+\left(x^{2}-m^{2}\right) f=0, m=0,1,2, \ldots
$$

which is nonsingular at $x=0$, is given by the Bessel function $J_{m}(x)$. Let the n-th non-trivial zero of the Bessel function $J_{m}(x)$ be $x_{m n}$, i.e. $J_{m}\left(x_{m n}\right)=0$ (assume that $x_{m n}>0$). The smallest zero x_{01} of the Bessel function J_{0} is given by $x_{01} \simeq 2.4048$ and $x_{m n}$ grows with increasing m, n. You can assume that all zeros of $J_{m}(x)$ are known.
(c) The solution of the following ODE

$$
x^{2} f^{\prime \prime}+x f^{\prime}-\left(x^{2}+n^{2}\right) f=0, n=0,1,2, \ldots,
$$

with no singularity at $x=0$, has no zeros in $0 \leq x<\infty$.

UNM Dept. of Mathematics and Statistics
Ordinary \& Partial Differential Equations
Qualifying Examination
Fall 2010

Instructions: There are six (6) problems on this examination. Work all problems.

1. (15 points) Consider the following ODE system $\left\{\begin{array}{l}x^{\prime}=-x^{2} y+y-y^{3} \\ y^{\prime}=-x^{3}+x^{5}+x^{3} y^{2}\end{array}\right.$.
(a) Find all equilibrium points.
(b) Find linearized systems at points $(0,0),(1,0)$ and $(1 / \sqrt{2}, 1 / \sqrt{2})$.
(c) Determine the type and stability of each of these 3 points for the respective linearized systems.
2. (25 points) Consider the following initial-value-problem (IVP)

$$
y y^{\prime \prime}+\left(y^{\prime}\right)^{2}+f(y)=0,\left.\quad y(t)\right|_{t=0}>0,\left.\quad y^{\prime}(t)\right|_{t=0}>0, \quad t \geq 0
$$

where $f(y)$ is a continuous function such that $f(y) \leq-f_{0} y^{2+\epsilon}, f_{0}>0$ and $\epsilon>0$, for all y. Hint: use a change of variable to reduce the order of the equation.
(a) Prove that the solution of the IVP blows up in finite time (i.e. $|y(t)| \rightarrow \infty$ for $t \rightarrow T<\infty)$.
(b) Find estimate for the blow up time T.
(c) Rewrite that IVP (by a change of variable) as a conservative system in a potential.
3. (15 points) Find similarity solutions to the problem

$$
u_{t}=u_{x x}, \quad t>0, x>0 ; \quad u(x, 0)=0, \quad x>0 ; \quad u(0, t)=1, \quad t>0 .
$$

Namely, look for a solution $U(x, t)=f(x / \sqrt{t})$ and reduce the problem to a boundary value problem for an ordinary differential equation for $f(z)$, where z is the similarity variable.
4. (15 points) Solve the problem

$$
x u_{x}+u_{y}=1, \quad x \in \mathbb{R}, \quad y>0, \quad u(x, 0)=\exp (x) .
$$

5. (15 points) Let $U \subset \mathbb{R}^{n}$ be an open set. Show that a function $v \in C^{2}(U)$ that satisfies the mean-value property

$$
v(x)=\frac{1}{\omega_{n} r^{n-1}} \int_{\partial B_{r}(x)} v d S
$$

for each closed ball $B_{r}(x)$ of radius r centered at x with $B_{r}(x) \subset U$ is necessarily harmonic. In the above, $\omega_{n}=n \pi^{n / 2} / \Gamma\left(\frac{n}{2}+1\right)$ is the surface area of the unit sphere in \mathbb{R}^{n}.
6. (15 points) Show that the Cauchy problem for Laplace's equation is ill-posed. Consider the problem in two dimensions

$$
\begin{array}{r}
\Delta u=0, \quad-\infty<x<\infty, \quad y>0 \\
u(x, 0)=f(x), \quad u_{y}(x, 0)=g(x), \quad-\infty<x<\infty
\end{array}
$$

Construct a sequence of separated solutions

$$
u_{n}(x, y)=\frac{1}{n} Y_{n}(y) \cos n x
$$

such that $u_{n}(x, 0) \rightarrow 0,\left(u_{n}\right)_{y}(x, 0) \rightarrow 0$ as $n \rightarrow \infty$, while $u_{n}(x, 1) \rightarrow \infty$. How can this be used to show that the solution does not depend continuously on the initial data?

