UNM Dept. of Mathematics and Statistics Ordinary & Partial Differential Equations Qualifying Examination

August 2011

Instructions: There are six (6) problems on this examination. Work all problems.

1. (15 points) Locate the equilibrium points of the following ODE system

$$\begin{cases} x' = x(x^2 + y^2 - 1) \\ y' = y(x^2 + y^2 - 1) \end{cases}.$$

Sketch the phase plane diagram, and discuss the stability properties of all equilibrium points.

2. (15 points) For the ODE system

$$\begin{cases} x' = X(x, y) \\ y' = Y(x, y) \end{cases}$$

 $\begin{cases} x' = X(x,y) \\ y' = Y(x,y) \end{cases}$ show that there are no closed paths in a simply-connected region in which $\frac{\partial(\rho X)}{\partial x} + \frac{\partial(\rho Y)}{\partial y}$

is of one sign, where $\rho(x,y)$ is any function having continuous first partial derivatives.

3. (20 points) The ODE system

$$\begin{cases} x_1' = (-\sin 2t)x_1 + (\cos 2t - 1)x_2 \\ x_2' = (\cos 2t + 1)x_1 + (\sin 2t)x_2 \end{cases}$$

has a fundamental matrix of normal solutions:

$$\Phi(t) = \begin{pmatrix} e^t(\cos t - \sin t) & e^{-t}(\cos t + \sin t) \\ e^t(\cos t + \sin t) & e^{-t}(-\cos t + \sin t) \end{pmatrix}.$$

Obtain a matrix E such that $\Phi(t+\pi) = \Phi(t)E$ and find the Floquet exponents.

4. (15 points) Consider the equation

$$yu_x + xu_y = xy^3$$

with the boundary conditions $u = x^2$ on y = 0, 1 < x < 2. In what region of (x, y)space is the solution determined? What is the solution?

5. (15 points) Show that the solution to the quasilinear equation

$$u_x + u_y = u^2$$

passing through the initial curve

$$x = t$$
 , $y = -t$, $u = t$,

1

becomes infinite along the hyperbola $x^2 - y^2 = 4$.

6. (20 points) Consider a cylindrical waveguide of radius a and infinite length, with absorbing boundary conditions at the walls and a vibrating diaphragm at z = 0 oscillating at frequency ω . Find the general solution for waves outgoing at $z = \pm \infty$. That is, solve

$$u_{tt} = c^2 \Delta u + \delta(z) e^{i\omega t}$$
, $0 \le r < a$, $0 \le \theta < 2\pi$, $-\infty < z < \infty$,

with $u(a, \theta, z, t) = 0$. Show that if $\omega < \omega_0$ there are no propagating wave solutions and find an expression for ω_0 .

Hints: (a) Look for solution in the following form (you need to justify why it is possible to drop the dependence on θ):

$$u(r, \theta, z, t) = R(r)Z(z)e^{i\omega t}$$
.

Carefully discuss the cases z < 0 and z > 0 and ensure that in each case the z-dependence leads to either outgoing waves or bounded behavior at infinity. Green's functions could be helpful here, but you can simply work away from z = 0 and impose the necessary conditions on the solution at z = 0 implied by the δ -function forcing to connect the expansions in the positive and negative half-line. Note that here we are only interested in the "particular" solution consistent with the forcing and BC, while the "outgoing-wave" condition implies that any homogeneous solution part must be set to zero.

(b) The solution of the following ODE

$$x^2f'' + xf' + (x^2 - m^2)f = 0, m = 0, 1, 2, \dots,$$

which is nonsingular at x=0, is given by the Bessel function $J_m(x)$. Let the *n*-th non-trivial zero of the Bessel function $J_m(x)$ be x_{mn} , i.e. $J_m(x_{mn})=0$ (assume that $x_{mn}>0$). The smallest zero x_{01} of the Bessel function J_0 is given by $x_{01}\simeq 2.4048$ and x_{mn} grows with increasing m,n. You can assume that all zeros of $J_m(x)$ are known. (c) The solution of the following ODE

$$x^{2}f'' + xf' - (x^{2} + n^{2})f = 0, n = 0, 1, 2, \dots$$

with no singularity at x = 0, has no zeros in $0 \le x < \infty$.