UNM Dept. of Mathematics and Statistics

Ordinary \& Partial Differential Equations
Qualifying Examination
Winter 2015

Instructions: There are six (6) problems on this examination. Work all problems for full credit.

1. (20 points) Find a general solution of the following ODE:

$$
t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=\frac{6-6 t+2 t^{2}}{t} e^{2 t}
$$

given that $y_{1}(t)=t$ is a solution of the corresponding homogeneous equation.
2. (10 points) For the nonlinear system:

$$
\left\{\begin{array}{l}
x^{\prime}=x-y+x^{2}-x y \\
y^{\prime}=-y+x^{2} .
\end{array} .\right.
$$

(a) determine the critical points for the equation;
(b) determine the linearized system for each critical point and discuss whether it can be used to approximate the behaviour of the non-linear system;
(c) what is the type and stability of each critical point?
3. (20 points) Show that the nonlinear system

$$
\begin{aligned}
& \dot{x}=3 x-y-4 x^{3}-7 x y^{2}, \\
& \dot{y}=x+3 y-4 x^{2} y-7 y^{3},
\end{aligned}
$$

has at least one periodic orbit in the annulus $\sqrt{3 / 7}<r<\sqrt{3} / 2$ (pay attention, that you have to show that trajectory cannot be on the boundary of the annulus!).
4. (25 points) Solve the following Cauchy problem for a first order PDE:

$$
\left(2 x_{1}+x_{2}\right) u_{x_{1}}+\left(x_{2}+1\right) u_{x_{2}}=u^{2},\left.\quad u\left(x_{1}, x_{2}\right)\right|_{x_{2}=1}=x_{1}^{2}+1, \quad x_{1} \geq 0, x_{2} \geq 1
$$

and find an implicit condition over x_{1} and x_{2} under which this Cauchy problem has a bounded solution.
5. (15 points) Use the separation of variables to solve the following nonhomogeneous initial/boundary-value problem

$$
\begin{array}{r}
u_{t t}-4 u_{x x}=8, x \in(0, l), t \in(0, \infty), l>0, a=\text { const }, \\
\left.u\right|_{x=0}=\left.u\right|_{x=l}=0, t \in(0, \infty), \\
\left.u(x, t)\right|_{t=0}=x(l-x)+\sin \left(\frac{5 \pi x}{l}\right), \\
\left.u_{t}(x, t)\right|_{t=0}=0 .
\end{array}
$$

Hint: represent solution as $u=v+w$, where v is the solution of nonhomogeneous t-independent problem and w is the solution of t-dependent homogeneous (i.e. with zero right hand side) problem.
6. (10 points) Prove the uniqueness of the solution $u(x, t)$ of the following initial/boundary value problem for the heat equation

$$
\begin{array}{r}
u_{t}-u_{x x}=0, x \in(0, l), t \in(0, \infty), l>0 \\
\left.u_{x}\right|_{x=0}=0,\left.u\right|_{x=l}=0, \quad t \in(0, \infty) \\
\left.u(x, t)\right|_{t=0}=u_{0}(x)
\end{array}
$$

