UNM Dept. of Mathematics and Statistics Ordinary & Partial Differential Equations Qualifying Examination

January 2016

Instructions: There are six (6) problems on this examination. Work all problems for full credit.

- 1. (15 points) Consider the nonlinear system $\dot{x} = y y^3$, $\dot{y} = -x y^2$.
 - (a) Find the fixed points and classify them by computing the linearization about each.
 - (b) Carefully sketch the phase portrait.
- 2. (10 points) A gradient system for $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ is a system of the form

$$\dot{\mathbf{x}} = -\nabla V(\mathbf{x})$$
 or $\dot{x}_i = -\frac{\partial V}{\partial x_i}$, $i = 1, \dots, n$

for some smooth function $V : \mathbb{R}^n \to \mathbb{R}$.

Suppose $\mathbf{x}(t)$ is the solution of a gradient system with initial condition $\mathbf{x}(0) = \mathbf{x}_0$.

(a) Prove that $V(\mathbf{x}(t)) \leq V(\mathbf{x}_0)$.

(b) Show that $\dot{x} = -x + 2y - x^3$, $\dot{y} = 2x - y - y^3$ is a gradient system by finding an appropriate function V(x, y).

3. (20 points total) Show that the nonlinear system

$$\dot{x}_1 = 4x_1 - 8, \dot{x}_2 = 2x_2 + 2x_3 - 2x_2^3 - \frac{1}{2}x_2x_3^2, \dot{x}_3 = -8x_2 + 2x_3 - 2x_2^2x_3 - \frac{1}{2}x_3^3,$$

has a periodic orbit $\gamma(t) = (2, \sin 4t, 2 \cos 4t)^T$ (2 points). Find the linearization of this system about $\gamma(t)$, $\dot{\mathbf{x}} = A(t)\mathbf{x}$ (5 points). Show (5 points) that the fundamental matrix $\Phi(t)$, $\Phi(0) = I$, for this linear system is given by

$$\Phi(t) = \begin{pmatrix} e^{4t} & 0 & 0\\ 0 & \cos 4t & \frac{1}{2}e^{-4t}\sin 4t\\ 0 & -2\sin 4t & e^{-4t}\cos 4t \end{pmatrix}.$$

Find the characteristic exponents and multipliers of $\gamma(t)$ (5 points). What are the dimensions of the stable, unstable and center manifolds of $\gamma(t)$ (3 points)?

4. (20 points) Solve the following Cauchy problems for a first order PDE:

$$(x_2 + x_2^5)v_{x_1} + x_1v_{x_2} = 0, \qquad v(x_1, x_2)|_{x_2=0} = v_0(x_1).$$

and find a condition for $v_0(x_1)$ for which the problem is well-posed.

5. (20 points total) Consider the initial value problem (IVP) problem

$$\begin{cases} u_t = au_{xx} + bu_{xxxx} + f \text{ in } \mathbb{R} \times (0, \infty), \\ u_{t=0} = u_0(x) \text{ on } \mathbb{R} \times \{t = 0\}. \end{cases}$$

Here $a, b \in \mathbb{R}$ are the constant, the scalar real functions $u_0(x)$ and f(x,t) are in the Schwartz space $S(\mathbb{R})$ for x (i.e. u_0 and f are infinitely differentiable and all their derivatives in x decay faster than any power of x at $|x| \to \infty$). Also assume that f(x,t) is continuous in $t \in [0,\infty)$

(a) (10 points) Find for which values of a, b this IVP is well-posed in L^2 for all times, i.e. $||u(\cdot, t)||_{L^2} < \infty$ for any $t \ge 0$.

(b) (10 points) Find the explicit formula for the solution of IVP in integral form which involves f(x,t) and $u_0(x)$.

6. (15 points) Prove the uniqueness of the solution $u(\mathbf{x}, t) \in C^2(\Omega \times [0, \infty))$ of the following initial/boundary value problem

$$\begin{aligned} u_{tt} - \Delta u &= 0, \ \mathbf{x} \in \Omega, \ t \in (0, \infty), \\ \mathbf{n} \cdot \nabla u|_{\partial\Omega} &= g(\mathbf{x}), \ g \in C^2(\partial\Omega), \\ u(\mathbf{x}, t)|_{t=0} &= u_0(\mathbf{x}), \quad u_t(\mathbf{x}, t)|_{t=0} = u_1(\mathbf{x}), \ \mathbf{x} \in \Omega, \ u_0, u_1 \in C^2(\Omega), \end{aligned}$$

where $\Omega \in \mathbb{R}^2$ is the simply connected bounded open set with the smooth boundary $\partial \Omega$ and **n** is the outward unit normal vector to $\partial \Omega$.

Hint: Use the energy method for the energy functional $e(t) := \int_{\Omega} [u_t^2 + |\nabla u|^2] d\mathbf{x}$.