UNM Dept. of Mathematics and Statistics

Ordinary \& Partial Differential Equations
Qualifying Examination
January 2016
Instructions: There are six (6) problems on this examination. Work all problems for full credit.

1. (15 points) Consider the nonlinear system $\dot{x}=y-y^{3}, \dot{y}=-x-y^{2}$.
(a) Find the fixed points and classify them by computing the linearization about each.
(b) Carefully sketch the phase portrait.
2. (10 points) A gradient system for $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ is a system of the form

$$
\dot{\mathrm{x}}=-\nabla V(\mathrm{x}) \quad \text { or } \quad \dot{x_{i}}=-\frac{\partial V}{\partial x_{i}}, \quad i=1, \ldots, n
$$

for some smooth function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Suppose $\mathbf{x}(t)$ is the solution of a gradient system with initial condition $\mathbf{x}(0)=\mathbf{x}_{0}$.
(a) Prove that $V(\mathbf{x}(t)) \leq V\left(\mathbf{x}_{0}\right)$.
(b) Show that $\dot{x}=-x+2 y-x^{3}, \dot{y}=2 x-y-y^{3}$ is a gradient system by finding an appropriate function $V(x, y)$.
3. (20 points total) Show that the nonlinear system

$$
\begin{aligned}
& \dot{x}_{1}=4 x_{1}-8 \\
& \dot{x}_{2}=2 x_{2}+2 x_{3}-2 x_{2}^{3}-\frac{1}{2} x_{2} x_{3}^{2} \\
& \dot{x}_{3}=-8 x_{2}+2 x_{3}-2 x_{2}^{2} x_{3}-\frac{1}{2} x_{3}^{3}
\end{aligned}
$$

has a periodic orbit $\gamma(t)=(2, \sin 4 t, 2 \cos 4 t)^{T}$ (2 points).
Find the linearization of this system about $\gamma(t), \dot{\mathbf{x}}=A(t) \mathbf{x}$ (5 points). Show (5 points) that the fundamental matrix $\Phi(t), \Phi(0)=I$, for this linear system is given by

$$
\Phi(t)=\left(\begin{array}{ccc}
e^{4 t} & 0 & 0 \\
0 & \cos 4 t & \frac{1}{2} e^{-4 t} \sin 4 t \\
0 & -2 \sin 4 t & e^{-4 t} \cos 4 t
\end{array}\right)
$$

Find the characteristic exponents and multipliers of $\gamma(t)$ (5 points). What are the dimensions of the stable, unstable and center manifolds of $\gamma(t)$ (3 points)?
4. (20 points) Solve the following Cauchy problems for a first order PDE:

$$
\left(x_{2}+x_{2}^{5}\right) v_{x_{1}}+x_{1} v_{x_{2}}=0,\left.\quad v\left(x_{1}, x_{2}\right)\right|_{x_{2}=0}=v_{0}\left(x_{1}\right)
$$

and find a condition for $v_{0}\left(x_{1}\right)$ for which the problem is well-posed.
5. (20 points total) Consider the initial value problem (IVP) problem

$$
\left\{\begin{array}{l}
u_{t}=a u_{x x}+b u_{x x x x}+f \text { in } \mathbb{R} \times(0, \infty), \\
\left.u\right|_{t=0}=u_{0}(x) \text { on } \mathbb{R} \times\{t=0\}
\end{array}\right.
$$

Here $a, b \in \mathbb{R}$ are the constant, the scalar real functions $u_{0}(x)$ and $f(x, t)$ are in the Schwartz space $S(\mathbb{R})$ for x (i.e. u_{0} and f are infinitely differentiable and all their derivatives in x decay faster than any power of x at $|x| \rightarrow \infty)$. Also assume that $f(x, t)$ is continuous in $t \in[0, \infty)$
(a) (10 points) Find for which values of a, b this IVP is well-posed in L^{2} for all times, i.e. $\|u(\cdot, t)\|_{L^{2}}<\infty$ for any $t \geq 0$.
(b) (10 points) Find the explicit formula for the solution of IVP in integral form which involves $f(x, t)$ and $u_{0}(x)$.
6. (15 points) Prove the uniqueness of the solution $u(\mathbf{x}, t) \in C^{2}(\Omega \times[0, \infty))$ of the following initial/boundary value problem

$$
\begin{array}{r}
u_{t t}-\Delta u=0, \mathbf{x} \in \Omega, t \in(0, \infty), \\
\left.\mathbf{n} \cdot \nabla u\right|_{\partial \Omega}=g(\mathbf{x}), g \in C^{2}(\partial \Omega) \\
\left.u(\mathbf{x}, t)\right|_{t=0}=u_{0}(\mathbf{x}),\left.\quad u_{t}(\mathbf{x}, t)\right|_{t=0}=u_{1}(\mathbf{x}), \mathbf{x} \in \Omega, u_{0}, u_{1} \in C^{2}(\Omega),
\end{array}
$$

where $\Omega \in \mathbb{R}^{2}$ is the simply connected bounded open set with the smooth boundary $\partial \Omega$ and \mathbf{n} is the outward unit normal vector to $\partial \Omega$.
Hint: Use the energy method for the energy functional $e(t):=\int_{\Omega}\left[u_{t}^{2}+|\nabla u|^{2}\right] d \mathbf{x}$.

