Mathematics and Statistics, Unversity of New Mexico MS/PhD Qualifying Examination, Fall 2021 Ordinary and Partial Differential Equations

Of the following six problems, please do five of your choice. Please start each problem on a new page labeled with the problem number and your secret ID code. Please motivate your answers and show your work.

1. (20 points) Consider the system

$$
\frac{d \mathbf{x}}{d t}=A(t) \mathbf{x}, \quad A(t)=\left(\begin{array}{cc}
-2 \sin t \cos t & \cos ^{2} t-\sin ^{2} t-1 \\
\cos ^{2} t-\sin ^{2} t+1 & 2 \sin t \cos t
\end{array}\right)
$$

where the coefficient matrix obeys $A(t+\pi)=A(t)$.
(a) (10 points) The following is a fundamental solution matrix for the system:

$$
\Phi(t)=\left(\begin{array}{rr}
e^{t}(\cos t-\sin t) & e^{-t}(\cos t+\sin t) \\
e^{t}(\cos t+\sin t) & -e^{-t}(\cos t-\sin t)
\end{array}\right) .
$$

State what this means, but no need for a tedious verification. Use $\Phi(t)$ to construct the principal solution matrix (or state transition matrix) $\Pi\left(t, t_{0}\right)$ for initial data specified at initial time $t_{0}=0$, and show that it can be written in the following real Floquet normal form.

$$
\Pi(t, 0)=P(t) e^{Q t}=\left(\begin{array}{rr}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right) \exp \left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) t\right)
$$

Regarding (the real version of) the Floquet Theorem, what are the key observations pertaining to $P(t)$? Hint: Work out the matrix exponential to compare the given expression for $\Pi(t, 0)$ with the one that follows from $\Phi(t)$.
(b) (5 points) Write down the monodromy matrix $M\left(t_{0}\right)$ based at $t_{0}=0$. Next, find the Floquet multipliers $\mu_{i}, i=1,2$ for the system, so that there exists solutions of the form

$$
\mathbf{y}_{i}(t+\pi)=\mu_{i} \mathbf{y}_{i}(t), \quad i=1,2 .
$$

(c) (5 points) Does the system have solutions of period π ? It is sufficient to consider the monodromy matrix $M\left(t_{0}\right)$ with $t_{0}=0$. Why?
2. (20 points)
(a) (5 points) State the Poincaré-Bendixson Theorem.
(b) (15 points) The planar system

$$
\frac{d x}{d t}=x-y-x^{3}, \quad \frac{d y}{d t}=x+y-y^{3}
$$

has only one critical point at the origin; you may assume this. Show that this system has a periodic orbit in the annular region $A=\left\{(x, y): 1<\sqrt{x^{2}+y^{2}}<\sqrt{2}\right\}$.
Hint: Convert to polar coordinates. Then show for small $\epsilon>0$ that $\dot{r}<0$ on the circle $r=\sqrt{2}+\epsilon$, and $\dot{r}>0$ on the circle $r=1-\epsilon$. Argue that this means there is a limit cycle in the closure $\bar{A}=\left\{(x, y): 1 \leqslant \sqrt{x^{2}+y^{2}} \leqslant \sqrt{2}\right\}$. Next, argue that no limit cycle can have a point in common with either of the circles $r=1$ or $r=\sqrt{2}$. Note also that $\sin (2 u)=2 \sin u \cos u$ and $\cos (2 u)=\cos ^{2} u-\sin ^{2} u$.
3. (20 points) Given that $y_{1}(t)=e^{t}$ is a solution of the corresponding homogeneous equation, find the general solution of the following ODE:

$$
t \frac{d^{2} y}{d t^{2}}-(t+1) \frac{d y}{d t}+y=t^{2}
$$

4. (20 points)
(a) (3 points) What is a harmonic function?
(b) (9 points) Precisely state the following properties of harmonic functions.

- mean-value property
- weak maximum principle
- strong maximum principle
(c) (8 points) Consider the following function:

$$
u\left(x_{1}, x_{2}\right)=\ln \left(x_{1}^{2}+x_{2}^{2}\right), \quad\left(x_{1}, x_{2}\right) \in \bar{U} \subset \mathbb{R}^{2},
$$

where \bar{U} is the closed annulus $\left\{\left(x_{1}, x_{2}\right): \frac{1}{2} \leqslant \sqrt{x_{1}^{2}+x_{2}^{2}} \leqslant 1\right\}$.

- Verify that u is harmonic.
- Verify that both weak maximum principle and weak minimum principle hold for u. Justify your answers.

5. (20 points) Consider the following initial-boundary value problem for the wave equation.

$$
\begin{aligned}
u_{t t}(x, t)-u_{x x}(x, t)=f(x, t), & \text { for }(x, t) \in(0,1) \times(0, T] \\
u(x, 0)=\phi_{1}(x), \quad u_{t}(x, 0)=\phi_{2}(x), & \text { for } x \in[0,1] \\
u_{x}(0, t)=g(t), \quad u_{x}(1, t)=h(t), & \text { for } t \geqslant 0
\end{aligned}
$$

where $T>0$ is a finite terminal time. Suppose that all data are smooth and compatible. Use the energy method to prove that there exists at most one solution $u=u(x, t)$ to the problem.
6. (20 points) Solve the following problem using characteristics:

$$
\begin{aligned}
u u_{x_{1}}+u_{x_{2}} & =1, & & x_{1} \in \mathbb{R}, x_{2}>0 \\
u & =\frac{1}{2} x_{1}, & & x_{1} \in \mathbb{R}, x_{2}=0
\end{aligned}
$$

