Geometry/Topology Qualifying Exam Department of Mathematics & Statistics University of New Mexico

Instructions: Do 7 of the following 8 problems. Show all your work.

- (1) Let X, Y be compact. Show that $X \times Y$ is compact.
- (2) Let X, Y be simply connected. Show that $X \times Y$ is simply connected.
- (3) Let \sim be an equivalence relation on a topological space S such that the natural projection $\pi: S \to S/\sim$ is an open map. Define the set $E = \{(x, y) \in S \times S \mid x \sim y\}$. Show that if E is closed in $S \times S$, then the quotient space S/\sim is Hausdorff.
- (4) Consider the (infinite) Möbius band M defined as the identification space of $[0, 1] \times \mathbb{R}$ with (0, y) identified with (1, -y), that is, $M = ([0, 1] \times \mathbb{R}) / \sim$. Prove that the projection map $\pi : M \to S^1$ defined by $\pi([t, y]) = t$ gives M the structure of a rank one vector bundle over the circle S^1 . (Here [t, y] denotes the equivalence class of $(t, y) \in [0, 1] \times \mathbb{R}$.)
- (5) Show that the 3-sphere S^3 is parallelizable, that is has a global frame.
- (6) Let $f : \mathbb{R}^3 \{(0,0,z)\} \to \mathbb{R}$ be given by

$$f(x, y, z) = (2 - \sqrt{x^2 + y^2})^2 + z^2.$$

Show that 1 is a regular value of f and identify $f^{-1}(1)$.

- (7) Prove that every vector field on a compact manifold is complete.
- (8) Determine the integral curves of the vector field $X = x\partial_y y\partial_x$ on \mathbb{R}^2 .