Geometry/Topology Qualifying Exam Department of Mathematics & Statistics University of New Mexico

Instructions: Do the following 7 problems. Show all your work. Notice the indicated relative value of each problem.

- (1) (10 points) Find an open covering of the set $S = \{1/n : n = 1, 2, ...\} \subset \mathbb{R}$ that does not contain a finite subcovering. Is it possible to do the same for the set $S \cup \{0\}$?
- (2) (20 points) On the unit sphere \mathbb{S}^n , define the relation that identifies a point x with its antipodal -x. Let \mathbb{RP}^n be the quotient space. Prove that \mathbb{RP}^n is a Hausdorff space.
- (3) (10 points) Compute the fundamental group of the doubly punctured sphere $\mathbb{S}^2 \setminus \{p,q\}$. Here p and q are any two given points on \mathbb{S}^2 .
- (4) (20 points) Let X be a path-connected topological space such that $\pi_1(X, x_0)$ is a finite group. Prove that any continuous function

 $f: X \to \mathbb{S}^1 \times \mathbb{S}^1$

is homotopic to a constant map.

- (5) (20 points) Let G be a topological group, X a Hausdorff space, and $G \times X \to X$ a continuous action of G on X. Let $I(x) = \{g \in G : gx = x\}$ and $O(x) = \{y \in X : y = gx \text{ for some } g \in G\}$.
 - (a) Show that I(x) is a closed subgroup of G.
 - (b) Show that if $y \in O(x)$, then I(x) and I(y) are conjugate subgroups of G.
 - (c) Show that if G is compact, then G/I(x) is homeomorphic to O(x).
- (6) (20 points) Let $\mathbb{GL}(n)$ denote the Lie group of non-singular $n \times n$ matrices, and let

$$\mathbb{SL}(n) = \{A \in \mathbb{GL}(n) : \det A = 1\}.$$

- (a) Show that $\mathbb{SL}(n)$ is a Lie group.
- (b) Show that $\mathbb{SL}(n)$ is connected and noncompact. **Hint** (for connectedness): use elementary matrices to show that $\mathbb{SL}(n)$ is path-connected.
- (7) (20 points) Let $f: M^{(n)} \to N^{(k)}$ be a smooth map between differentiable manifolds. Suppose that

$$df(x): T_x M \to T_p N$$

is surjective for all $x \in f^{-1}(p)$. Show that $f^{-1}(p)$ is an n-k dimensional submanifold of M.

Hint: use the fact that if $g : \mathbb{R}^n \to \mathbb{R}^k$ is a smooth map such that g(0) = 0 and Dg(0) has rank k, then there exists a local diffeomorphism $\varphi : U \ni 0 \to \varphi(U) \subset \mathbb{R}$ such that $g \circ \varphi(x_1, \ldots, x_n) = (x_1, \ldots, x_k)$.