Instructions: Do the following problems. Show all your work.

- 1) Let $f : X \to Y$ be a continuous surjection between two topological spaces. Show that the image f(A) of an everywhere dense set $A \subset X$ is an everywhere dense set.
- 2) Show that every (topological) covering map $p: Y \to X$ between two topological spaces X and Y is an open map.
- 3) Let $p: (\tilde{X}, \tilde{a}) \to (X, a)$ be a covering map and γ a loop at a. Show that the (unique) lift $\tilde{\gamma}$ of γ starting at \tilde{a} is a loop at \tilde{a} if and only if $[\gamma] \in p_*(\pi_1(\tilde{X}, \tilde{a}))$.
- 4) Find the fundamental group of the cylinder $Y = \{(x, y, z) \mid x^2 + y^2 = 1, 0 \le z \le 1\} \subset \mathbb{R}^3$.
- 5) Let $\pi: E \to M$ be a smooth rank k vector bundle. Show that any section $f \in \Gamma(E)$ is a smooth embedding of M in the total space E.
- 6) Suppose \mathbb{Z} acts on \mathbb{R}^2 via $n \circ (x, y) = A^n \cdot (x, y)^t$, where

$$\left(\begin{array}{cc} 2^n & 0\\ 0 & 2^{-n} \end{array}\right)$$

Is the quotient map $p: \mathbb{R}^2 \to \mathbb{R}^2/\mathbb{Z}$ a covering map?

7) Suppose \mathbb{Z} acts on \mathbb{R}^2 via $n \circ (x, y) = A^n \cdot (x, y)^t$, where

$$\left(\begin{array}{cc} 2^n & 0\\ 0 & 2^{-n} \end{array}\right)$$

Is the quotient space \mathbb{R}^2/\mathbb{Z} a Hausdorff space?

8) Show that the tangent space of SL(n) at the identity matrix I is given by

$$T_{\mathbb{I}}SL(n) = \{ B \in M(n) \mid \text{ tr } B = 0 \}$$

using $SL(n) \hookrightarrow M(n) \cong \mathbb{R}^{n^2}$. Hint: Take a curve $A(t) \in SL(n)$ with $A(0) = \mathbb{I}$, A'(0) = B and prove that $\det_{*A}(B) = (\det A) \operatorname{tr}(A^{-1}B)$.

- 9) Let $\theta = xdy \wedge dz ydz \wedge dx + z^2dx \wedge dy$ and $X = y\frac{\partial}{\partial x} x\frac{\partial}{\partial y}$. Compute the Lie derivative $\mathcal{L}_X \theta$.
- 10) Let ω is an exterior k-form on a smooth manifold M, $\omega \in \Lambda^k M$. Show that if k is odd then $\omega \wedge \omega = 0$.