Geometry/Topology Qualifying Exam, August, 2016
Department of Mathematics \& Statistics
University of New Mexico

Instructions: Do the following problems. Show all your work.

1) Show that a smooth submersion between two smooth manifolds is an open map, i.e., if $f: M \rightarrow N$ is a smooth map, which is a submersion, then f is an open map.
2) Let X be a Hausdorff space and f a continuous map $f: X \rightarrow X$. Show that the fixed point set of f is closed in X, i.e., the set $C=\{x \in X \mid f(x)=x\}$ is closed in X.
3) Let $p: X \rightarrow Y$ be a covering map where Y is simply connected and X is path connected. Show that p is a homeomorphism.
4) Suppose $f_{i}: X \rightarrow Y, i=1,2$, are two continuous maps that are homotopy equivalent. Show that the number of path-connected components of Y containing images of pathconnected components X under the maps f_{i} coincide. In other words, the images of the path-connected components of X under both maps f_{i} will "hit" the same number of path-connected components (in fact same path-connected components) of Y.
5) For any integer $n \geq 1$, define a flow on the odd-dimensional sphere $\mathbb{S}^{2 n-1} \subset \mathbb{C}^{n}$ by

$$
\theta(t, z)=e^{i t} z
$$

Show that the infinitesimal generator of θ is a smooth nonvanishing vector field on $\mathbb{S}^{2 n-1}$.
6) Consider the following smooth 1-form on \mathbb{R}^{3} :

$$
\eta=-\frac{4 x z d x}{\left(x^{2}+1\right)^{2}}+\frac{2 y d y}{y^{2}+1}+\frac{2 d z}{x^{2}+1}
$$

(a) Show that η is an exact form.
(b) Evaluate the (line) integral of η along the one-dimensional manifold with boundary, which is the straight line segment from $(0,0,0)$ to $(1,1,1)$.
7) Define a smooth 2 -form on \mathbb{R}^{3} by

$$
\omega=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y
$$

(a) Compute ω in spherical coordinate (ρ, φ, θ) defined by

$$
(x, y, z)=(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi)
$$

(b) Compute the pullback $\iota_{\mathbb{S}}^{*} \omega$ to \mathbb{S}^{2}, using coordinates (φ, θ) on the open subset where these coordinates are defined.
(c) Show that $\iota_{\mathbb{S}}^{*} \omega$ is nowhere zero.
8) For the following pair of smooth vector fields X, Y in \mathbb{R}^{3}, compute the Lie derivative $\mathcal{L}_{X} Y, \mathcal{L}_{Y} X$.

$$
X=y \frac{\partial}{\partial z}-2 x y^{2} \frac{\partial}{\partial y} ; \quad Y=\frac{\partial}{\partial y} .
$$

9) Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the smooth map $F(x, y)=[x, y, 1]$, and let

$$
X=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}
$$

be a smooth vector field in the two-dimensional real projective space \mathbb{R}^{2}. Prove that there is a smooth vector field Y in $\mathbb{R} \mathbb{P}^{2}$ that is F-related to X, and compute its coordinate representation in terms of the following coordinate charts:

$$
\begin{aligned}
& U_{0}=\left\{\left[x_{0}, x_{1}, x_{2}\right] \in \mathbb{R P}^{2} \mid x_{0} \neq 0 .\right\} \\
& U_{1}=\left\{\left[x_{0}, x_{1}, x_{2}\right] \in \mathbb{R P}^{2} \mid x_{1} \neq 0 .\right\} \\
& U_{2}=\left\{\left[x_{0}, x_{1}, x_{2}\right] \in \mathbb{R P}^{2} \mid x_{2} \neq 0 .\right\}
\end{aligned}
$$

10) a) Find the fundamental group of the real projective space $\mathbb{R} P^{2}$. b) Find the fundamental group of the real projective space $\mathbb{R} P^{2}$ with one point removed. Note: you are free to use any of definitions of the real projective space.
