Numerical Analysis Spring 2000 MS/PhD Qualifying Examination

Instructions: Complete all four problems.

1. Determine which of the following statements are true or false. Justify your answer.

Let A and B be $n \times n$ real, square, matrices with entries a_{ij} , $1 \le i \le n$, $1 \le j \le n$ and b_{ij} , $1 \le i \le n$, $1 \le j \le n$; respectively.

- (a) Suppose A is invertible. Then there is a number $\epsilon > 0$ such that if B satisfies $|b_{ij}| < \epsilon$, then A + B is invertible.
- (b) Suppose A is not invertible. Then there is a number $\epsilon > 0$ such that if $|b_{ij}| < \epsilon$, then then A + B is not invertible.
- 2. Let V be the space of polynomials of degree less than or equal to 2; i.e. $p \in V \iff p(x) = ax^2 + bx + c$. Introduce coordinates in V by associating each such polynomial with the point in \mathbb{R}^3 : (p(-1), p(0), p(1)).
 - (a) Find the mapping of R³ → R³ corresponding to differentiation in V; (i.e., the matrix representing differentiation in the chosen coordinate system.)
 (b) Find vectors in R³ spanning the range of this mapping. What are the correspond-
 - ing elements of V?

 (c) Find vectors in \mathbb{R}^3 spanning the null space of this mapping. What are the corre-
 - 3. Let A be an $m \times n$ real matrix with $m \ge n$.

sponding elements of V?

- a. What is the QR factorization of A? Describe how the QR factorization can be used to find the least squares solution of Ax = b.
- b. Define Householder reflections or Givens rotations.
- ${f c.}$ Describe an algorithm for computing the QR factorization using the transformation you defined above.
- d. Estimate the complexity of the algorithm described above. Treat separately the cases where Q must be saved and cases where it isn't needed.
- e. Discuss the numerical stability of the factorization.

- 4. Let A be an $n \times n$ real symmetric matrix.
 - a. What does it mean for A to be positive definite?
 - b. Consider the application of Gaussian elimination without pivoting to A. Show that A is positive definite if and only if all pivots encountered are positive.
 - c. How can the result above be used to devise a test for positive definiteness?
 - d. Use the result in [b.] to prove that positive definite symmetric matrices possess a Cholesky factorization, i.e. can be written as LL^T where L is lower triangular.