Numerical Analysis Exam August 2000

Complete all five problems. Unless otherwise stated, all matrices and vectors are real. Good luck!

1. (25 pts)

Let $A, C \in \mathbb{R}^{n \times n}$ with $A = A^T$ and C nonsingular.

(a) Prove that the eigenvalues of A are real.

Now, let A be nonsingular and let $B := C^T A C$. Prove:

- (b) B is nonsingular
- (c) A and B have the same number of positive (and negative) eigenvalues (that is, prove Sylvester's law of inertia).
- 2. (15 pts)

Let

$$A = \left(\begin{array}{cc} 2 & 0\\ 0 & 1\\ 0 & 1 \end{array}\right)$$

- (a) Find the Moore-Penrose pseudoinverse, A^+ .
- (b) Using A^+ find the solution to the least squares problem Ax = b where $b = (1, 0, 1)^T$.
- 3. (10 pts)

Let $A \in \mathbb{R}^{n \times n}$ be upper triangular. If $AA^T = A^TA$ prove that A is a diagonal matrix.

- 4. (25 pts)
 - (a) Define the condition number, $\kappa(A)$ of an $n \times n$ matrix, A, and show that $\kappa(A) \ge 1$.
 - (b) Show that orthogonal matrices have the minimum condition number if the Euclidean norm is used.
 - (c) Let Ax = b, (A + E)x = (b + e). Prove the fundamental inequality:

$$\frac{\|e\|}{\|b\|} \le \kappa(A) \frac{\|E\|}{\|A\|}.$$

5. (25 pts)

Let A be an $n \times n$ matrix. Prove that if and only if $\rho(A) < 1$:

$$\lim_{n \to \infty} \sum_{j=0}^{n} A^{j} = (I - A)^{-1}.$$

Here $\rho(A)$ is the spectral radius of A. Relate this result to an iterative method for solving (I-A)x=b.