Numerical Analysis Exam

August 2000

Complete all five problems. Unless otherwise stated, all matrices and vectors are real. Good luck!

1. $(25 \mathrm{pts})$

Let $A, C \in R^{n \times n}$ with $A=A^{T}$ and C nonsingular.
(a) Prove that the eigenvalues of A are real.

Now, let A be nonsingular and let $B:=C^{T} A C$. Prove:
(b) B is nonsingular
(c) A and B have the same number of positive (and negative) eigenvalues (that is, prove Sylvester's law of inertia).
2. (15 pts)

Let

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right)
$$

(a) Find the Moore-Penrose pseudoinverse, A^{+}.
(b) Using A^{+}find the solution to the least squares problem $A x=b$ where $b=(1,0,1)^{T}$.
3. (10 pts)

Let $A \in R^{n \times n}$ be upper triangular. If $A A^{T}=A^{T} A$ prove that A is a diagonal matrix.
4. (25 pts)
(a) Define the condition number, $\kappa(A)$ of an $n \times n$ matrix, A, and show that $\kappa(A) \geq 1$.
(b) Show that orthogonal matrices have the minimum condition number if the Euclidean norm is used.
(c) Let $A x=b,(A+E) x=(b+e)$. Prove the fundamental inequality:

$$
\frac{\|e\|}{\|b\|} \leq \kappa(A) \frac{\|E\|}{\|A\|} .
$$

5. (25 pts)

Let A be an $n \times n$ matrix. Prove that if and only if $\rho(A)<1$:

$$
\lim _{n \rightarrow \infty} \sum_{j=0}^{n} A^{j}=(I-A)^{-1}
$$

Here $\rho(A)$ is the spectral radius of A. Relate this result to an iterative method for solving $(I-A) x=b$.

