Numerical Analysis Spring 2004 MS/PhD Qualifying Examination

Instructions: Complete all problems. Explain your answers.

1. Consider the subspace $M \subset \mathbb{R}^4$ spanned by the vectors

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ -1 \end{pmatrix}.$$

- (a) Write down the matrix \mathbf{P} representing the orthogonal projector onto M.
- (b) What is the null space of **P**?
- (c) What is the range of **P**?
- (d) Find the vector x in M that is closest in the 2-norm sense to the vector $c = (1, 1, 1, 1)^T$.
- 2. Consider solving the linear system of equations, $\mathbf{A}x = b$ with \mathbf{A} an $n \times n$ real matrix and $x, b \in \mathbb{R}^n$, using an iterative method based on the splitting $\mathbf{A} = \mathbf{M} \mathbf{N}$, with \mathbf{M} invertible. The iterative method is $x_{k+1} = \mathbf{G}x_k + f$ where the iteration matrix is $\mathbf{G} = \mathbf{M}^{-1}\mathbf{N}$ and $f = \mathbf{M}^{-1}b$.
 - (a) What are G_J and G_{GS} , the iteration matrices for the Jacobi and Gauss-Seidel iterative methods, respectively?
 - (b) The iterative method is called symmetrizable if for some nonsingular matrix $\mathbf{W} \in \mathbb{R}^{n \times n}$, the matrix $\mathbf{W}(\mathbf{I} \mathbf{G})\mathbf{W}^{-1}$ is symmetric positive definite. \mathbf{W} is called the symmetrization matrix. If the iterative method is symmetrizable then prove:
 - i. The eigenvalues of G are real.
 - ii. The largest eigenvalue of G is less than one.
 - iii. The set of eigenvectors of G forms a basis for \mathbb{R}^n .
 - (c) Does a symmetrizable iterative method necessarily converge? Explain.
 - (d) Show that the iterative method is symmetrizable whenever A and M are symmetric positive definite matrices. (Hint: consider $A^{1/2}$.)
 - (e) If **A** is symmetric positive definite, are Jacobi or Gauss-Seidel symmetrizable? Explain.

3. Let:

$$\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T,$$

be the singular value decomposition of the $m \times n$ matrix A.

- i. Supposing rank(\mathbf{A}) = r, use \mathbf{U} and \mathbf{V} to find orthonormal bases for the column space of \mathbf{A} , the row space of \mathbf{A} , the null space of \mathbf{A} , and the null space of \mathbf{A}^T .
- ii. Supposing m = n, use the SVD to find the Euclidean norm condition number of A. Justify your answer.
- iii. Use the SVD to find the matrix, \mathbf{B} , of rank q < r which is closest to \mathbf{A} in the Euclidean norm. Justify your answer.
- iv. Let W be an $n \times n$ matrix. Suppose the singular values of W are:

$$\sigma_k = 2^{1-k}.$$

Using standard double precision arithmetic, for which $\epsilon_{\text{machine}} \approx 2^{-52}$, for n how large can one expect to accurately solve a linear system with coefficient matrix \mathbf{W} ?

- v. Consider the problem of computing $\mathbf{W}z$ using standard double precision arithmetic and \mathbf{W} from the previous problem. Assuming you have precomputed the SVD, roughly how many flops should this require for $n \gg 1$? (Compute the approximate leading constant for full credit.)
- 4. Suppose $\mathbf{A} = \mathbf{A}^T$ is symmetric but not necessarily positive definite. Assume further that \mathbf{A} has an LU factorization. Describe an algorithm for factoring A into triangular factors requiring about half the work and storage of standard Gaussian elimination. Comment on the stability of the algorithm, justifying your comments.