Numerical Analysis Fall 2008 MS/PhD Qualifying Examination

Instructions: Write the last four digits of your SSN (**not** your name) on each sheet. Complete all three problems. Clear and concise answers with good justification will improve your score.

- 1. (30 pts.) Let A be an $n \times n$ real matrix and let $A^{(k)}$ denote the $k \times k$ matrix formed by the intersection of the first k rows and columns of A. Prove that if $A^{(k)}$ is nonsingular, $k = 1, \ldots, n$, then A has an LU factorization, where L is a unit lower triangular matrix (i.e. $l_{jj} = 1$) and U is upper triangular. Express the pivots, u_{jj} , in terms of the determinants of the $A^{(k)}$.
- 2. (30 pts.) Let $A = A^T$ be a real $d \times d$ symmetric matrix.
 - i. Use Schur's Theorem to prove that A has real eigenvalues and can be diagonalized by an orthogonal similarity transformation, $Q^TAQ = \Lambda = \operatorname{diag}(\lambda_i)$ where λ_i , $i = 1, \ldots, n$ are the eigenvalues of A and $Q^TQ = I$.
 - ii. Suppose A has exactly p positive eigenvalues. Show that there exists a p-dimensional subspace, P, of \mathbb{R}^d such that $x^TAx > 0$ for all $x \in P$, $x \neq 0$. Show that if W is any subspace of dimension greater than p there exists a nonzero vector $y \in W$ such that $y^TAy \leq 0$. (Hint: prove that there exists a nonzero vector, $y \in W$, which is orthogonal to all the eigenvectors of A corresponding to positive eigenvalues.)
 - iii. Now consider nonsimilarity transformations, $B = S^T A S$ where S is nonsingular. Give an example showing that the spectrum is not preserved by such transformations. Use part (ii.) to prove that B has exactly as many positive, negative and zero eigenvalues as A.

- 3. (40 pts.) Let $A = A^T$ be a real $d \times d$ symmetric matrix. In the following we derive and analyze the MINRES method for solving Ax = b. (Note that actual implementations of MINRES typically involve additional steps to ensure numerical stability, but here you are to consider the algorithm in exact arithmetic.)
 - i. Define the kth Krylov subspace by:

$$\mathcal{K}_k(A;b) = \operatorname{span}\left\{b, Ab, \dots, A^{k-1}b\right\}.$$

The Lanczos process is defined by:

$$q_1 = \frac{b}{\|b\|_2}, \quad q_0 = 0, \quad \beta_0 = 0,$$

For $j = 1, \ldots$

$$z = Aq_j, \quad \alpha_j = q_j^T z, \quad z = z - \alpha_j q_j - \beta_{j-1} q_{j-1},$$

$$\beta_j = ||z||_2, \quad q_{j+1} = \frac{z}{\beta_j}.$$

Prove that in the absence of breakdowns $\beta_j = 0$ the vectors $\{q_1, \ldots, q_k\}$ are an orthonormal basis for the kth Krylov subspace. (Hint: assuming q_1, \ldots, q_j is an orthonormal basis for $\mathcal{K}_j(A;b)$ project z onto the orthogonal complement of $\mathcal{K}_j(A;b)$ as in the Gram-Schmidt algorithm.)

ii. The kth MINRES iterate, x^k , is defined as the solution of the least squares problem:

$$\min_{y \in \mathcal{K}_k} ||Ay - b||_2.$$

Writing

$$x^k = \sum_{j=1}^k c_j^k q_j$$

Show that the expansion coefficients c^k are solutions of the least squares problem:

$$\min_{c \in \mathbb{R}^k} \| T^k c - \| b \|_2 e_1^{k+1} \|_2$$

where T^k is the $(k+1) \times k$ tridiagonal matrix:

$$t_{jj} = \alpha_j, \quad t_{j,j+1} = t_{j+1,j} = \beta_j,$$

and e_1^{k+1} is the first column of the $(k+1) \times (k+1)$ identity matrix.

- iii. Briefly outline (no details necessary) an efficient algorithm for computing the iterates, c^k .
- iv. Show that if there are no breakdowns MINRES converges in d iterations and if there is a breakdown, $\beta_k = 0$, then $x^k = x$, i.e. the algorithm converges in k steps.