Numerical Analysis, Fall 2009 MS/PhD Qualifying Examination

Write the last four digits of your SSN (not you name) on each work sheet. Complete all problems, providing concise answers with justification.

1. (25 points) Let $M_k^{m \times n}$, $m \ge n$, denote the set of matrices in $\mathbb{C}^{m \times n}$ of rank k. Assume that $A \in M_r^{m \times n}$ and let $B \in M_k^{m \times n}$, k < r, be such that

$$||A - B||_2 \le ||A - X||_2, \quad X \in M_k^{m \times n}.$$

Express B and $||A - B||_2$ in terms of the singular value decomposition of A:

$$A = U\Sigma V^* = \sum_{i=1}^r \sigma_i u_i v_i^*.$$

- **2.** (25 points) Given a one-parameter family of Hermitian matrices $M(t) \in \mathbb{C}^{n \times n}$, where the coefficients of M(t) are differentiable functions of t, we seek expressions for the variation of the eigenvalues $\{\lambda_1(t), \ldots, \lambda_n(t)\}$ and eigenvectors $\{v_1(t), \ldots, v_n(t)\}$ with respect to t in order to study the behavior of the eigenproblem of a Hermitian matrix under Hermitian perturbation. Show the following. (Assume $\lambda_i(t), v_i(t)$ are differentiable functions of t.)
- (a) dV/dt = VA, where $V = [v_1, v_2, \dots, v_n]$ and A is skew-Hermitian.
- (b) $d\Lambda/dt = V^*(dM/dt)V A\Lambda + \Lambda A$, where Λ is the diagonal matrix $(\lambda_1, \ldots, \lambda_n)$.
- (c) Use (b) and the fact that A is skew to deduce that $d\lambda_i/dt = v_i^*(dM/dt)v_i$.
- (d) Now consider $M(t) = M_0 + tM_1$, where M_0, M_1 are Hermitian and $||M_1||_2 = 1$. Show that the eigenvalues of M(t) are stable at t = 0 by deriving bounds for $\left| \frac{d\lambda_i}{dt}(0) \right|$.
- **3.** (25 points) Let $A \in \mathbb{C}^{m \times n}$, $m \ge n$, rank(A) = n, and

$$A^{\dagger} = \int_{0}^{\infty} \exp(-tA^*A)A^*dt.$$

Show that $A^{\dagger}A = I$ and that AA^{\dagger} is a projection operator. Prove that A^{\dagger} is a generalized inverse of A.

- **4.** (25 points) Let $A \in \mathbb{R}^{m \times n}$, $m \ge n$ have full rank.
- (a) Show that the component x of the solution to the system

$$M \begin{pmatrix} -r \\ x \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}, \qquad M = \begin{pmatrix} I & A \\ A^T & 0 \end{pmatrix} \in \mathbb{R}^{(m+n)\times(m+n)}$$

minimizes $||Ax - b||_2$.

- (b) Express the condition number of M in terms of the singular values of A.
- (c) Write down an explicit expression for M^{-1} in terms of A and A^{T} .