Numerical Analysis, Fall 2009 MS/PhD Qualifying Examination

Write the last four digits of your SSN (not you name) on each work sheet. Complete all problems, providing concise answers with justification.

1. (25 points) Let $M_{k}^{m \times n}, m \geq n$, denote the set of matrices in $\mathbb{C}^{m \times n}$ of rank k. Assume that $A \in M_{r}^{m \times n}$ and let $B \in M_{k}^{m \times n}, k<r$, be such that

$$
\|A-B\|_{2} \leq\|A-X\|_{2}, \quad X \in M_{k}^{m \times n}
$$

Express B and $\|A-B\|_{2}$ in terms of the singular value decomposition of A :

$$
A=U \Sigma V^{*}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{*}
$$

2. (25 points) Given a one-parameter family of Hermitian matrices $M(t) \in$ $\mathbb{C}^{n \times n}$, where the coefficients of $M(t)$ are differentiable functions of t, we seek expressions for the variation of the eigenvalues $\left\{\lambda_{1}(t), \ldots, \lambda_{n}(t)\right\}$ and eigenvectors $\left\{v_{1}(t), \ldots, v_{n}(t)\right\}$ with respect to t in order to study the behavior of the eigenproblem of a Hermitian matrix under Hermitian perturbation. Show the following. (Assume $\lambda_{i}(t), v_{i}(t)$ are differentiable functions of t.)
(a) $d V / d t=V A$, where $V=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ and A is skew-Hermitian.
(b) $d \Lambda / d t=V^{*}(d M / d t) V-A \Lambda+\Lambda A$, where Λ is the diagonal matrix $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
(c) Use (b) and the fact that A is skew to deduce that $d \lambda_{i} / d t=v_{i}^{*}(d M / d t) v_{i}$.
(d) Now consider $M(t)=M_{0}+t M_{1}$, where M_{0}, M_{1} are Hermitian and $\left\|M_{1}\right\|_{2}=1$. Show that the eigenvalues of $M(t)$ are stable at $t=0$ by deriving bounds for $\left|\frac{d \lambda_{i}}{d t}(0)\right|$.
3. (25 points) Let $A \in \mathbb{C}^{m \times n}, m \geq n, \operatorname{rank}(A)=n$, and

$$
A^{\dagger}=\int_{0}^{\infty} \exp \left(-t A^{*} A\right) A^{*} d t
$$

Show that $A^{\dagger} A=I$ and that $A A^{\dagger}$ is a projection operator. Prove that A^{\dagger} is a generalized inverse of A.
4. (25 points) Let $A \in \mathbb{R}^{m \times n}, m \geq n$ have full rank.
(a) Show that the component x of the solution to the system

$$
M\binom{-r}{x}=\binom{b}{0}, \quad M=\left(\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right) \in \mathbb{R}^{(m+n) \times(m+n)}
$$

minimizes $\|A x-b\|_{2}$.
(b) Express the condition number of M in terms of the singular values of A.
(c) Write down an explicit expression for M^{-1} in terms of A and A^{T}.

