Numerical Analysis Fall 2015
 MS/PhD Qualifying Examination

1. Let $A \in R^{n \times n}$ be an invertible, symmetric positive definite matrix, $b \in R^{n}$. This problem regards the method of steepest descent to find the solution \mathbf{x}^{*} of $A \mathbf{x}=\mathbf{b}$. Steepest descent is an iterative method that defines a sequence \mathbf{x}_{n} which converges to the minimizer of the function

$$
\phi(x)=\frac{1}{2} \mathbf{x}^{T} A \mathbf{x}-\mathbf{x}^{T} \mathbf{b} .
$$

(a) Let $e(\mathbf{x})=\mathbf{x}-\mathbf{x}^{*}$ and $\|x\|_{A}=\sqrt{x^{T} A \mathbf{x}}$. where $\mathbf{x}^{*}=A^{-1} \mathbf{b}$ solves $A \mathbf{x}=\mathbf{b}$. Prove that \mathbf{x} minimizes $\phi(\mathbf{x})$ if and only if \mathbf{x} minimizes $\|e(\mathbf{x})\|_{A}$, and thus $\mathbf{x}=\mathbf{x}^{*}$, unique.
(b) Derive a formula for $-\nabla \phi$.
(c) The vector $-\nabla \phi(\mathbf{x})$ points in the direction of steepest descent of ϕ at \mathbf{x}. The method of steepest descent consists of iterating

$$
\mathbf{x}_{n+1}=\mathbf{x}_{n}-\alpha_{n} \nabla \phi\left(\mathbf{x}_{n}\right)
$$

starting from an initial guess \mathbf{x}_{0}. That is, one steps from \mathbf{x}_{n} to \mathbf{x}_{n+1} by moving along the direction of steepest descent. Determine the optimal step length α_{n} that minimizes $\phi\left(\mathbf{x}_{n+1}\right)$. Explain why the method always converges to the minimizer \mathbf{x}^{*} of ϕ.
(d) Write down an algorithm for the full steepest descent iteration. There are three operations inside the main loop.
2. Consider the least squares problem $\min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|_{2}$ with $A \in R^{m \times n}, m>n$, and $\mathbf{b} \in R^{m}$.
(a) Assume A has full rank. Describe how to solve the least squares problem using (i) the normal equations, (ii) the QR factorization, and (iii) the SVD de- composition. Discuss the condition number and the number of operations for each method.
(b) Discuss what happens when the rank of A is less than n.
3. Determine the rate of convergence of the Rayleigh quotient $\mathbf{r}\left(v_{k}\right)=\mathbf{v}_{k}^{T} A \mathbf{v}_{k}$, to an eigenvalue of $A \in R^{n \times n}, A=A^{T}$, with vectors $\mathbf{v}_{k} \in R^{n}$ given by the normalized power method $\mathbf{v}_{k+1}=$ $A \mathbf{v}_{k} /\left\|A \mathbf{v}_{k}\right\|$.
4. Let $f \in C_{[0,1]}$ be given, and u solve

$$
-u_{x x}=f, \quad x \in[0,1], \quad u(0)=u(1)=0 .
$$

For given N, an approximation v_{i} of $u\left(x_{i}\right), x_{i}=i h, h=1 /(N+1)$ is given by

$$
\begin{gather*}
-v_{i+1}+2 v_{i}-v_{i-1}=h^{2} f_{i}, \quad i=1, \ldots, N, \quad h=1 /(N+1), \tag{1a}\\
v_{0}=v_{N+1}=0 \tag{1b}
\end{gather*}
$$

where $f_{i}=f\left(x_{i}\right)$. Equations (1ab) form a linear system in v_{i} which can be written as

$$
T_{N}\left[v_{1}, \ldots, v_{N}\right]^{T}=h^{2}\left[f_{1}, \ldots, f_{N}\right]^{T}
$$

(a) Show that the eigenvalues and eigenvectors of T_{N} are $\lambda_{j}=2\left(1-\cos \left(\frac{\pi j}{N+1}\right)\right)$ and \mathbf{z}_{j}, with components $z_{j}^{k}=\sqrt{\frac{2}{N+1}} \sin \left(\frac{\pi j k}{N+1}\right)$.
(b) Let $Z=\left[\mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{N}\right]$, and $T_{N}=Z \Lambda Z^{T}$, and consider the equivalent problem in 2D,

$$
u_{x x}+u_{y y}=f(x, y)
$$

where $(x, y) \in D=[0,1] \times[0,1]$, and

$$
u=0 \text { on } \partial D,
$$

with the approximation $v_{i, j}$ of $u\left(x_{i}, y_{j}\right)$ given by

$$
\begin{align*}
& -v_{i+1, j}-v_{i-1, j}-v_{i, j+1}-v_{i, j-1}+4 v_{i, j}=h^{2} f_{i, j} \tag{2a}\\
& v_{i, 0}=v_{i, N+1}=v_{0, j}=v_{N+1, j}=0, \quad i, j=1, \ldots, N \tag{2b}
\end{align*}
$$

where $f_{i, j}=f\left(x_{i}, y_{j}\right), x_{i}=i h, y_{j}=j h, h=1 /(N+1)$. Show that equations (2ab) can be written as a matrix equation

$$
\begin{equation*}
T_{N} V+V T_{N}=h^{2} F \tag{3}
\end{equation*}
$$

Here $V_{i, j}=v_{i, j}$ and $F_{i, j}=f_{i, j}$.
(c) Let $V^{\prime}=Z^{T} V Z$. Show that the solution V of equation (3) can be found by the following steps

$$
\begin{align*}
F^{\prime} & =Z^{T} F Z \tag{4a}\\
v_{j, k}^{\prime} & =\frac{h^{2} f_{j, k}^{\prime}}{\lambda_{j}+\lambda_{k}} \tag{4b}\\
V & =Z V^{\prime} V^{T} \tag{4c}
\end{align*}
$$

(d) To leading order in N, how many operations does it require to solve (4)?
(e) Outline a method to solve (3) with complexity $O\left(N^{2} \log N\right)$.
5. Let

$$
A=\left(\begin{array}{ll}
1 & 1 \\
2 & 2 \\
0 & 0
\end{array}\right)
$$

(a) Find the reduced and a full singular value decomposition of A.
(b) Find the best rank-1 approximation B of A in the 2-norm.
(c) Find $\|A-B\|_{2}$.

