Numerical Analysis Fall 2015 MS/PhD Qualifying Examination

1. Let $A \in \mathbb{R}^{n \times n}$ be an invertible, symmetric positive definite matrix, $b \in \mathbb{R}^n$. This problem regards the method of steepest descent to find the solution \mathbf{x}^* of $A\mathbf{x} = \mathbf{b}$. Steepest descent is an iterative method that defines a sequence \mathbf{x}_n which converges to the minimizer of the function

$$\phi(x) = \frac{1}{2} \mathbf{x}^T A \mathbf{x} - \mathbf{x}^T \mathbf{b} \ .$$

- (a) Let $e(\mathbf{x}) = \mathbf{x} \mathbf{x}^*$ and $||x||_A = \sqrt{x^T A \mathbf{x}}$. where $\mathbf{x}^* = A^{-1} \mathbf{b}$ solves $A \mathbf{x} = \mathbf{b}$. Prove that \mathbf{x} minimizes $\phi(\mathbf{x})$ if and only if \mathbf{x} minimizes $||e(\mathbf{x})||_A$, and thus $\mathbf{x} = \mathbf{x}^*$, unique.
- (b) Derive a formula for $-\nabla \phi$.
- (c) The vector $-\nabla \phi(\mathbf{x})$ points in the direction of steepest descent of ϕ at \mathbf{x} . The method of steepest descent consists of iterating

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \alpha_n \nabla \phi(\mathbf{x}_n)$$

starting from an initial guess \mathbf{x}_0 . That is, one steps from \mathbf{x}_n to \mathbf{x}_{n+1} by moving along the direction of steepest descent. Determine the optimal step length α_n that minimizes $\phi(\mathbf{x}_{n+1})$. Explain why the method always converges to the minimizer \mathbf{x}^* of ϕ .

- (d) Write down an algorithm for the full steepest descent iteration. There are three operations inside the main loop.
- 2. Consider the least squares problem $\min_{\mathbf{x}} ||A\mathbf{x} \mathbf{b}||_2$ with $A \in \mathbb{R}^{m \times n}, m > n$, and $\mathbf{b} \in \mathbb{R}^m$.
 - (a) Assume A has full rank. Describe how to solve the least squares problem using (i) the normal equations, (ii) the QR factorization, and (iii) the SVD de- composition. Discuss the condition number and the number of operations for each method.
 - (b) Discuss what happens when the rank of A is less than n.
- 3. Determine the rate of convergence of the Rayleigh quotient $\mathbf{r}(v_k) = \mathbf{v}_k^T A \mathbf{v}_k$, to an eigenvalue of $A \in R^{n \times n}$, $A = A^T$, with vectors $\mathbf{v}_k \in R^n$ given by the normalized power method $\mathbf{v}_{k+1} = A\mathbf{v}_k/||A\mathbf{v}_k||$.
- 4. Let $f \in C_{[0,1]}$ be given, and u solve

$$-u_{xx} = f$$
, $x \in [0,1]$, $u(0) = u(1) = 0$.

For given N, an approximation v_i of $u(x_i)$, $x_i = ih$, h = 1/(N+1) is given by

$$-v_{i+1} + 2v_i - v_{i-1} = h^2 f_i , \quad i = 1, \dots, N , \quad h = 1/(N+1),$$
 (1a)

$$v_0 = v_{N+1} = 0 (1b)$$

where $f_i = f(x_i)$. Equations (1ab) form a linear system in v_i which can be written as

$$T_N[v_1, \dots, v_N]^T = h^2[f_1, \dots, f_N]^T.$$

(a) Show that the eigenvalues and eigenvectors of T_N are $\lambda_j = 2(1 - \cos(\frac{\pi j}{N+1}))$ and \mathbf{z}_j , with components $z_j^k = \sqrt{\frac{2}{N+1}} \sin(\frac{\pi j k}{N+1})$.

(b) Let $Z = [\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_N]$, and $T_N = Z\Lambda Z^T$, and consider the equivalent problem in 2D,

$$u_{xx} + u_{yy} = f(x, y)$$

where $(x, y) \in D = [0, 1] \times [0, 1]$, and

$$u = 0$$
 on ∂D ,

with the approximation $v_{i,j}$ of $u(x_i, y_j)$ given by

$$-v_{i+1,j} - v_{i-1,j} - v_{i,j+1} - v_{i,j-1} + 4v_{i,j} = h^2 f_{i,j} , \qquad (2a)$$

$$v_{i,0} = v_{i,N+1} = v_{0,j} = v_{N+1,j} = 0 , \quad i, j = 1, \dots, N,$$
 (2b)

where $f_{i,j} = f(x_i, y_j)$, $x_i = ih$, $y_j = jh$, h = 1/(N+1). Show that equations (2ab) can be written as a matrix equation

$$T_N V + V T_N = h^2 F. (3)$$

Here $V_{i,j} = v_{i,j}$ and $F_{i,j} = f_{i,j}$.

(c) Let $V' = Z^T V Z$. Show that the solution V of equation (3) can be found by the following steps

$$F' = Z^T F Z, (4a)$$

$$v'_{j,k} = \frac{h^2 f'_{j,k}}{\lambda_j + \lambda_k},\tag{4b}$$

$$V = ZV'V^T. (4c)$$

- (d) To leading order in N, how many operations does it require to solve (4)?
- (e) Outline a method to solve (3) with complexity $O(N^2 \log N)$.
- 5. Let

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \\ 0 & 0 \end{pmatrix}$$

- (a) Find the reduced and a full singular value decomposition of A.
- (b) Find the best rank-1 approximation B of A in the 2-norm.
- (c) Find $||A B||_2$.