Numerical Analysis Spring 2016 MS/PhD Qualifying Examination

Instructions: Write your identifying numbers (not your name) on each sheet. Complete all problems. Justify your answers and clearly show all required work.

1. (a) Let $A=\operatorname{diag}\left\{d_{1}, d_{2}, \ldots, d_{n}\right\} \in R^{n \times n}$. What are the eigenvalues and eigenvectors of A ?
(b) Let A be a nonsingular matrix and let λ be an eigenvalue of A. Show that $1 / \lambda$ is an eigenvalue of A^{-1}.
(c) Let $A \in R^{n \times n}$ and let $B=A-\alpha I$ for some scalar α. How do the eigenvalues of A and B compare? Explain.
(d) Show that all eigenvalues of a nilpotent matrix are 0 .
2. Consider the matrix

$$
A=\left(\begin{array}{ccc}
3 & 2 & 1 \\
0 & -1 & 0 \\
3 & 6 & 5
\end{array}\right)
$$

(a) find a nonsingular P such that $P^{-1} A P$ is diagonal.
(b) Use your result in (a) to write an expression for A^{100} (skip lengthy computation)
(c) Write an expression for e^{A} (skip lengthy computation)
3. Consider the least squares problem $\min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|_{2}$ with $A \in R^{m \times n}, m>n$, and $\mathbf{b} \in R^{m}$.
(a) Assume A has full rank. Describe how to solve the least squares problem using (i) the normal equations, (ii) the QR factorization, and (iii) the SVD decomposition. State a reason why you would not use the normal equations.
(b) Discuss in a few words how the case $\operatorname{rank}(A)<n$ differs from the case $\operatorname{rank}(A)=n$.
4. Determine the rate of convergence of the Rayleigh quotient $\mathbf{r}\left(v_{k}\right)=\mathbf{v}_{k}^{T} A \mathbf{v}_{k}$, to an eigenvalue of $A \in R^{n \times n}, A=A^{T}$, with vectors $\mathbf{v}_{k} \in R^{n}$ given by the normalized power method $\mathbf{v}_{k+1}=$ $A \mathbf{v}_{k} /\left\|A \mathbf{v}_{k}\right\|$, where \mathbf{v}_{0} is some vector with $\left\|\mathbf{v}_{0}\right\|=1$.
5. Let $x \in R^{n}$ and $A \in R^{n \times n}$. Let $\rho(A)$ be the spectral radius of A, and $\|A\|_{k}, k=1,2, \infty$ be the matrix norms induced by the corresponding vector norms $\|x\|_{k}$.
(a) Show that $\rho(A) \leq\|A\|$ where $\|\ldots\|$ is any matrix norm induced by a vector norm.
(b) Show that

$$
\|x\|_{\infty} \leq\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty} .
$$

and that the inequalities are sharp (best possible bound for generic x).
(c) Show that

$$
\|A\|_{2} \leq \sqrt{n}\|A\|_{\infty} .
$$

and that the inequality is sharp.

