Numerical Analysis Spring 2016 MS/PhD Qualifying Examination

Instructions: Write your identifying numbers (**not** your name) on each sheet. Complete all problems. Justify your answers and clearly show all required work.

- 1. (a) Let $A = diag\{d_1, d_2, \dots, d_n\} \in \mathbb{R}^{n \times n}$. What are the eigenvalues and eigenvectors of A?
 - (b) Let A be a nonsingular matrix and let λ be an eigenvalue of A. Show that $1/\lambda$ is an eigenvalue of A^{-1} .
 - (c) Let $A \in \mathbb{R}^{n \times n}$ and let $B = A \alpha I$ for some scalar α . How do the eigenvalues of A and B compare? Explain.
 - (d) Show that all eigenvalues of a nilpotent matrix are 0.
- 2. Consider the matrix

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 0 & -1 & 0 \\ 3 & 6 & 5 \end{pmatrix}$$

- (a) find a nonsingular P such that $P^{-1}AP$ is diagonal.
- (b) Use your result in (a) to write an expression for A^{100} (skip lengthy computation)
- (c) Write an expression for e^A (skip lengthy computation)
- 3. Consider the least squares problem $\min_{\mathbf{x}} ||A\mathbf{x} \mathbf{b}||_2$ with $A \in \mathbb{R}^{m \times n}, m > n$, and $\mathbf{b} \in \mathbb{R}^m$.
 - (a) Assume A has full rank. Describe how to solve the least squares problem using (i) the normal equations, (ii) the QR factorization, and (iii) the SVD decomposition. State a reason why you would not use the normal equations.
 - (b) Discuss in a few words how the case rank(A) < n differs from the case rank(A) = n.
- 4. Determine the rate of convergence of the Rayleigh quotient $\mathbf{r}(v_k) = \mathbf{v}_k^T A \mathbf{v}_k$, to an eigenvalue of $A \in R^{n \times n}$, $A = A^T$, with vectors $\mathbf{v}_k \in R^n$ given by the normalized power method $\mathbf{v}_{k+1} = A\mathbf{v}_k/||A\mathbf{v}_k||$, where \mathbf{v}_0 is some vector with $||\mathbf{v}_0|| = 1$.
- 5. Let $x \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$. Let $\rho(A)$ be the spectral radius of A, and $||A||_k$, $k = 1, 2, \infty$ be the matrix norms induced by the corresponding vector norms $||x||_k$.
 - (a) Show that $\rho(A) \leq ||A||$ where ||...|| is any matrix norm induced by a vector norm.
 - (b) Show that

$$||x||_{\infty} \le ||x||_2 \le \sqrt{n}||x||_{\infty} .$$

and that the inequalities are sharp (best possible bound for generic x).

(c) Show that

$$||A||_2 \le \sqrt{n}||A||_{\infty} .$$

and that the inequality is sharp.