## Numerical Analysis Spring 2018 MS/PhD Qualifying Examination

Instructions: Write your code number (**not** your name) on each sheet. Complete all four problems. Clear and concise answers with good justification will improve your score.

- 1. Throughout this question A is a real  $m \times n$  matrix with full column rank and  $\epsilon$  refers to machine epsilon.
  - (a) Let A have singular values  $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}, \sigma_n$ . Show that the singular values of  $A^T A$  are  $\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2$ .
  - (b) Define the 2-norm condition number of A (rectangular with full column rank) as the ratio  $\kappa_2(A) = \sigma_{\max}(A)/\sigma_{\min}(A)$ . Show that  $\kappa_2(A^TA) = [\kappa_2(A)]^2$ .
  - (c) Consider the normal equations  $A^TAx = A^Tb$  to solve a linear least squares problem. If  $A^TA\hat{x} = A^Tb + f$  where  $||f||_2 \le c\epsilon ||A^T||_2 ||b||_2$  then show that,

$$\frac{\|x - \hat{x}\|_2}{\|x\|_2} \le c\epsilon \kappa_2(A)^2 \frac{\|A^T\|_2 \|b\|_2}{\|A^T b\|_2}.$$

2. Let  $A \in \mathbb{R}^{n \times n}$  such that A = L + D + U where D is the diagonal, L the strictly lower triangular and U the strictly upper triangular part of A. The kth Gauss-Seidel iteration to solve the linear system Ax = b is given by

$$(D+L)x^{(k)} = -Ux^{(k-1)} + b (1)$$

where  $x^{(k)} \in \mathbb{R}^n$  is the approximate solution after the kth iteration. Let the error after the kth iteration be  $e^{(k)} = x^{(k)} - x$  where x is the true solution. Also let

$$r_i = \sum_{j=1, j \neq i}^n |a_{ij}/a_{ii}|, \quad \text{and} \quad r = \max_{1 \le i \le n} r_i.$$

(a) Show that the *i*th component of the error satisfies

$$e_i^{(k)} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} e_j^{(k)} - \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} e_j^{(k-1)}$$

(Hint: Write out equation (1) componentwise.)

(b) Show that the *i*th component of the error satisfies,

$$|e_i^{(k)}| \le r ||e^{(k-1)}||_{\infty}$$

(Hint: Use induction on the components of the error.)

- (c) Show that the Gauss-Seidel iteration converges to the true solution if A is diagonally dominant.
- 3. Let  $A \in \mathbb{R}^{n \times n}$  be an invertible matrix.
  - (a) Explain how you can compute the QR factorization of A.
  - (b) Given any QR factorization,  $A = \hat{Q}\hat{R}$  of A, show that there exists a QR factorization, A = QR, such that the diagonal entries of R are positive.
  - (c) Show that an upper triangular orthogonal matrix, M, must be a diagonal matrix with either 1 or -1 on the diagonal. (Hint: Use induction on the size of the matrix and look at the products  $MM^T$  and  $M^TM$ .)
  - (d) Show that the QR factorization, A = QR, such that the diagonal entries of R are positive, is unique. (Hint: Assume otherwise and then apply part (c).)
- 4. Let  $\mathbf{v}_0 \in \mathbb{R}^n$  be some vector with  $||\mathbf{v}_0|| = 1$ . Determine the rate of convergence of the Rayleigh quotient  $r(\mathbf{v}_k) = \mathbf{v}_k^{\top} A \mathbf{v}_k$  to an eigenvalue of  $A \in \mathbb{R}^{n \times n}$ ,  $A = A^{\top}$ , with vectors  $\mathbf{v}_k \in \mathbb{R}^n$  given by the normalized power iteration method

$$\mathbf{v}_{k+1} = \frac{A\mathbf{v}_k}{||A\mathbf{v}_k||}.$$

You can use the fact that an eigenvector of A, say  $\mathbf{q}$ , is the stationary point of the function  $r(\mathbf{v})$ , that is  $\nabla r(\mathbf{q}) = 0$ .

1