
Spring 2022 Numerical Analysis MS/PhD Qualifying Examination

Please write your code number (not your name) on each work sheet. Please do five of
the following six problems, providing concise answers with justification. Please mark an
X through the problem you do not want graded.

1. Let ‖ · ‖ be a vector norm on Rn.

(a) Define the corresponding induced matrix norm (or operator norm), also denoted
‖ · ‖, defined on Rn×n.

(b) Prove that ‖AB‖ ≤ ‖A‖‖B‖, where A,B ∈ Rn×n.

(c) Given A ∈ Rn×n, define the norm

‖A‖max = max
1≤i,j≤n

|aij|.

Give a simple example showing that ‖AB‖max ≤ ‖A‖max‖B‖max does not always
hold. Therefore, ‖ · ‖max is not induced by a vector norm.

(d) Show that ‖A‖2 ≤ n‖A‖max. Hint: Use the Cauchy Schwarz inequality to first
show that

‖A‖22 ≤ ‖A‖2F =
∑

1≤i,j≤n

|aij|2,

where ‖A‖F is the Frobenius norm.

2. Consider computation of XA, where X,A ∈ Rn×n and X is nonsingular.

(a) Assuming floating point arithmetic indicated by “fl”, show that

fl(XA) = X(A+ δA), where ‖δA‖2 = κ2(X)‖A‖2O(ε)

in terms of machine epsilon ε and the 2-norm condition number κ2(X) = ‖X‖2‖X−1‖2
of X. Hints: For any column bk (or row) of a matrix B, we have ‖bk‖2 ≤ ‖B‖2. For
any two vectors u, v ∈ Rn, we have fl(uTv) = uT (v + δv), where ‖δv‖2 = ‖v‖2O(ε).
Also consider the estimate from 1(d).

(b) The generalization of the above result is

fl(X1 · · ·XpA) = X1 · · ·Xp(A+ δA), ‖δA‖2 =

p∏
i=1

κ2(Xi)‖A‖2O(ε).

Discuss the relevance of the generalized result for the stability of QR-factorization of
a matrix performed via the Householder algorithm.

3. Let A,B ∈ Rn×n, with A nonsingular and ‖A−1‖2‖B‖2 = q < 1. Here ‖ · ‖2 is the
matrix norm induced by the Euclidean norm on Rn.

(a) Show that C = A+B is nonsingular.

(b) Show that the iterative scheme Axj+1 = b−Bxj for j = 0, 1, 2, . . . converges for
any choice of x0 to the solution of Cx = b.

(c) Derive an estimate for the Euclidean norm of the error x∗− xj in terms of q and
‖x1 − x0‖2, where x∗ is the unique solution to Cx = b.
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4. (a) The matrix I + uvT ∈ Rn×n for u, v ∈ Rn is a rank-1 perturbation of the identity.
Write down a formula for the inverse of I + uvT . When is your expression valid?

(b) Let A ∈ Rn×n have entries which satisfy

aij = 0 for i < n unless i = j or i = j + 1.

That is, A is a lower bidiagonal matrix except for the last row (i = n) which might be
full. Describe an algorithm for solving a system of linear equations with coefficient
matrix A using O(n) flops and storage. Under what conditions does your algorithm
break down?

5. Let A ∈ Rn×k with n ≥ k have rank(A) = k.

(a) It is known that the symmetric matrix ATA can be factored as

ATA = V ΛV T ,

where the columns of V are the orthonormal eigenvectors of ATA and the diagonal
entries of the diagonal matrix Λ are the corresponding eigenvalues. Using this as a
starting point, derive the singular value decomposition of A. That is, show that there
is a real orthogonal matrix U and a matrix Σ ∈ Rn×k, which is zero except for its
diagonal entries σ1 ≥ σ2 ≥ · · · ≥ σk > 0, such that A = UΣV T .

(b) Let b ∈ Rn. Show that the SVD derived in part (a) can be used to compute
x ∈ Rk such that ‖b− Ax‖2 is minimized.

6. Let A ∈ Rn×n be a symmetric positive definite matrix, and consider Conjugate
Gradient (CG) iteration to solve the linear system Ax = b. The kth CG iterate
xk minimizes the A-norm of the error x∗ − x, over the space x0 + Kk(A, r0), where
Kk(A, r0) = span(r0, Ar0, . . . , A

k−1r0) is the kth Krylov subspace, r0 = b−Ax0 is the
initial residual, and x∗ is the true solution. That is,

xk = min
x∈x0+Kk(A,r0)

‖x∗ − x‖A,

where ‖z‖A =
√
zTAz denotes the A-norm of the vector z.

(a) Prove that that the error for the kth iterate obeys

‖x∗ − xk‖A ≤ ‖pk(A)‖A‖x∗ − x0‖A,
where pk(z) is any real polynomial of degree k or less with pk(0) = 1. Here ‖pk(A)‖A
denotes the matrix norm of pk(A) induced by the vector A-norm.

(b) Assuming exact arithmetic, show that CG will converge in at most n iterations.
Are there scenarios in which it will converge sooner? You may use without proof that
‖pk(A)‖A = max{|pk(z)| : z ∈ σ(A)}, where σ(A) is the set of eigenvalues of A.


