
Fall 2022 Numerical Analysis MS/PhD Qualifying Examination

Instructions

• Please write your code number (not your name) on each work sheet.
• Always provide concise answers with justification.
• Each problem needs to start on a new sheet of paper.
• There are five problems in total, and each problem is worth 20 points.

1. (20 points) Let A ∈ Rm×n for m > n, and recall that the first singular value of A is
defined as

σ1(A) = max
x∈Rn, ‖x‖2=1

‖Ax‖2.

(a) Give a similar definition for σn(A).
(b) With y ∈ Rm, define Ā = [A, y] ∈ Rm×(n+1). Show that

σ1(Ā) ≥ σ1(A) and σn+1(Ā) ≤ σn(A).

2. (20 points) Let us use the normalized power method to compute an approximate
eigenvector

vk+1 =
Avk
‖Avk‖

,

where ‖v0‖ = 1, v0 ∈ Rm and the matrix A ∈ Rm×m is symmetric A = AT .
(a) Let |λ1| = |λ2| > |λ3| ≥ · · · ≥ |λm| be the m eigenvalues of A with corresponding

eigenvectors q1, q2, . . . , qm. Also let the initial vector v0 satisfy q∗1 v0 6= 0 and
q∗2 v0 6= 0.
What vector(s) will vk converge to? Justify your answer.

(b) Next, let q∗1 v
0 6= 0 but q∗2 v

0 = 0.
What vector(s) will vk converge to in exact arithmetic? Justify your answer.
What vector(s) will vk converge to in floating point arithmetic? Justify your
answer.

(c) Derive the rate of convergence of the Rayleigh quotient r(vk) = vTkAvk to λ1
when |λ1| > |λi|, for all i > 1.

3. (20 points) This problem considers the solution to the following boundary value
problem (BVP):

(1)
−p′′(x) + p(x) = g(x), x ∈ (0, 1)

p(0) = p(1) = 0

where p′′(x) denotes the second derivative of the function p(x) with respect to x.
(a) Given a smooth function f , its second derivative may be approximated by the

following finite difference formula:

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2

where h is some small positive real number. Show that if f has bounded deriva-
tives, then the error in this approximation satisfies,
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∣∣∣∣f ′′(x)− f(x+ h)− 2f(x) + f(x− h)

h2

∣∣∣∣ = O(h2)

(b) Now we use the approximation from part (a) for the solution of BVP (1). Given
a positive integer N , let h = 1/(N + 1), and xi = ih for i = 0, 1, · · · , N + 1. Let
gi = g(xi) and the approximations to the solution at the points xi be pi ≈ p(xi).
Then, using the finite difference approximation to the second derivative, we
obtain the following set of equations:

(2)
−pi+1 + 2pi − pi−1

h2
+ pi = gi, i = 1, 2, · · · , N

where p0 = pN+1 = 0 (by using the boundary values from (1)). This set of equa-
tions may be written as a linear system Ax = b, where x = [p1, p2, · · · , pN−1]T .
Write out the matrix A and vector b for this linear system.

(c) Show that the matrix A in part (b) is symmetric positive definite. You may
make an assumption on h if needed, but specify that assumption clearly.

(d) Name two numerical algorithms which may only be used to solve symmetric
positive definite linear systems (that is, linear systems Bx = b such that B is
symmetric positive definite). For large N (say in the billions), which of these
two methods would you recommend and why?

4. (20 points) Let ε denote machine precision (or unit roundoff), ‖ · ‖ the infinity norm,
κ(·) the infinity norm condition number, and I the identity matrix. Consider the
solution of

Ax = b

using Gaussian Elimination with partial pivoting (GEPP), where A ∈ Rn×n is an
invertible matrix, and x and b are vectors in Rn. Assume the matrix A is such that
no pivoting is needed during GEPP. GEPP first computes the LU-factorization of A
in floating point arithmetic, which is equivalent to computing a unit lower triangle
matrix L̂ and an upper triangular matrix Û such that

A+ E = L̂Û

where ‖E‖ ≤ O(ε)‖L̂‖‖Û‖.
Then we solve fl

(
L̂ŷ = b

)
, where fl(·) indicates that the arithmetic is carried out

in floating point (that is, ŷ is the numerically computed solution using floating point

arithmetic to L̂y = b). The solution ŷ satisfies

(L̂+ F )ŷ = b

for some F ∈ Rn×n. Then, we carry out back-substitution in floating point: fl
(
Û x̂ = ŷ

)
to get the computed solution x̂. The solution x̂ satisfies

(Û +G)x̂ = ŷ

for some G ∈ Rn×n. Since forward and backward substitution are backward stable,
we have ‖F‖ = O(ε)‖L̂‖ and G = O(ε)‖Û‖.
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Assume that ‖Û‖ = c‖A‖ for some small constant c, and that A is well conditioned
(and hence κ(A) = O(1) � 1/ε). O(ε) may have a factor of n inside. This is fine,
that is, treat n as a constant and so n ∈ O(1).

(a) Show that ‖L̂‖ ≤ n (and hence ‖L‖ = O(1) since we consider n as a constant).
(b) Show that the computed solution x̂ satisfies (A + H)x̂ = b such that H =

O(ε)‖A‖. This shows that GEPP is backward stable with the given assumptions.

(Hint: Start with (L̂+ F )ŷ = b).
(c) We have a result which states: If square matrix X satisfies ‖X‖ < 1, then I−X

is invertible and ‖(I − X)−1‖ ≤ (1/(1 − ‖X‖). Use this result to show that
(A+H) is invertible.

(d) Show that the error in the solution satisfies x− x̂ = −(I+A−1H)−1A−1Hx, and
the relative error satisfies the bound:

‖x− x̂‖
‖x‖

≤ κ(A)

1− κ(A)‖H‖‖A‖

(
‖H‖
‖A‖

)
(e) Argue that if A is well-conditioned, then the relative error satisfies ‖x−x̂‖‖x‖ = O(ε).

5. (20pt) Let A ∈ Rn×n be symmetric positive definite (SPD) and consider using the
Conjugate Gradients (CG) algorithm to solve the linear system Ax = b. CG is well-
known to minimize the A-norm of the error x∗−x over the Krylov space x0+Kk(A, b),
where Kk(A, b) = span(A0b, Ab,A2b, . . . , Ak−1b), x0 is the initial guess to the linear
system, and x∗ is the exact solution. More precisely, we can say

xk = min
x∈x0+Kk(A,b)

‖x∗ − x‖A.

Remember that ‖y‖A =
√
yTAy is the definition of the A-norm.

Next, let B ∈ Rn×n be a general nonsymmetric matrix whose inverse exists. We
want to use CG to solve a linear system

By = f,

where y, f ∈ Rn and y0 is some initial guess. To consider CG, we turn our attention
to the matrices BTB and BBT .
(a) Show that BTB and BBT are both SPD. Thus, we can apply CG to the two

systems BTBy = BTf and BBT z = f .
(b) Let k iterations of CG be applied to BTBy = BTf with initial guess y0, yielding

the approximate solution yk. Show that the 2-norm of the residual r = f −Byk
is minimized over the Krylov space y0 +Kk(BTB,BTf).

(c) Let k iterations of CG be applied to BBT z = f with initial guess z0, yielding
the approximate solution zk. Show that the resulting approximate solution to
the original system yk = BT zk minimizes the 2-norm of the error ‖y∗ − yk‖ over
the Krylov space zk ∈ z0 + Kk(BBT , f). The quantity y∗ is the exact solution
to By = f .


