Real Analysis Qualifying Exam Aug 14, 2000

Instructions: There are 8 problems, you should attempt all of them. Start each problem on a new sheet of paper and write on one side of each sheet of paper. Remember to write your Social Security number in all pages and to number them. Good luck!!

- **1.** Suppose that $r \in (0,1)$ and that x > -1. Show that $(1+x)^r \le 1 + rx$, and that equality holds if and only if x = 0.
- **2.** Find all continuous functions $f:[a,b]\to\mathbb{R}$ which satisfy, for each $x\in(a,b)$,

$$\int_{a}^{x} f(t) dt = \int_{x}^{b} f(t) dt.$$

- **3.** Show that if $f:(a,b)\to\mathbb{R}$ is real analytic in its domain and f is not identically zero, then the zeros of f are isolated (i.e., if f(c)=0 for some $c\in(a,b)$, there exists a $\delta>0$ such that $f(x)\neq 0$ for all $x\in(a,b)$ satisfying $0<|x-c|<\delta$). Remember that a function is real analytic at a point x_0 if it is infinitely differentiable at the point x_0 and if the Taylor series centered at x_0 has a positive radius of convergence.
- **4.** Let $\{\phi_n\}_{n=1}^{\infty}$ be a sequence of nonnegative Riemann integrable functions on [-1,1] which satisfy:

i.
$$\int_{-1}^{1} \phi_n(t) dt = 1 \text{ for each } n$$

- *ii*. for every $\delta > 0$, $\phi_n \to 0$ uniformly on $[-1, -\delta] \cup [\delta, 1]$.
- (a) Show that if $f:[-1,1]\to\mathbb{R}$ is Riemann integrable and continuous at x=0, then

$$\lim_{n \to \infty} \int_{-1}^{1} f(t) \phi_n(t) \, dt = f(0).$$

(b) Show that

$$\lim_{n \to \infty} n \int_{-1/n}^{1/n} e^{-x^2} (1 - n^2 x^2) \, dx = \frac{4}{3}.$$

- 5. (a) Give the definition of a compact metric space.
- (b) Let (X, ρ) be a compact metric space, and let $f: X \to X$ be an isometry, i.e., $\rho(f(x), f(y)) = \rho(x, y)$ for every $x, y \in X$. Show that f is bijective.

6. (a) Find a sequence of Riemann integrable functions on \mathbb{R} such that $f_n \to 0$ uniformly on \mathbb{R} , but

$$\lim_{n \to \infty} \int_{\mathbf{R}} f_n(t) \, dt \neq 0.$$

(b) Find a sequence of Riemann integrable functions on [0,1] such that $f_n(t) \to 0$ for all $t \in [0,1]$, but

$$\lim_{n \to \infty} \int_0^1 f_n(t) \, dt \neq 0.$$

(c) Suppose that $f_n:[a,b]\to\mathbb{R}$ is continuous for each $n\in\mathbb{N}$, and that $f_n\to f$ uniformly on [a,b]. Show that f is Riemann integrable over [a,b] and that

$$\lim_{n\to\infty} \int_0^1 f_n(t) dt = \int_0^1 f(t) dt.$$

7. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$f(x,y) = (e^x \cos y, e^x \sin y)$$

(a) Show that f is injective on the strip $S = \{(x, y) : -\pi < y < \pi\}$.

Therefore f is surjective when viewed as a mapping from $S \to f(S)$. Let g be its inverse function.

- (b) Find dg(0,1), where dg(x,y) is the differential of g evaluated at the point (x,y).
- **8.** (a) State Stoke's Theorem (either for surfaces in \mathbb{R}^3 or for k-submanifolds of \mathbb{R}^n , $k \geq 2$, $n \geq 3$).
- (b) Evaluate the line integral $\oint_C \phi \cdot d\mathbf{r}$, where $\phi = 2y\mathbf{i} + z\mathbf{j} + 3y\mathbf{k}$, and C is the intersection of the surfaces $x^2 + y^2 + z^2 = 4z$ and z = x + 2. The curve C is traversed in a clockwise direction to an observer standing at the origin.
- (c') Given $f: \mathbb{R}^3 \to \mathbb{R}$ a differentiable map. Let $\psi = \nabla f$ and assume that ψ is divergence-free (i.e. $\operatorname{div} \psi = 0$). Then show that for a closed regular surface \mathcal{S} that is a boundary of the region \mathcal{R}

$$\iiint_{\mathcal{R}} \psi^2 dV = \iint_{S} f \psi \cdot \mathbf{n} \, d\sigma.$$

Here **n** is the outward normal to the surface and $\psi^2 = \psi \cdot \psi$ is scalar valued.