Real Analysis Qualifying Exam August 2001

There are seven problems. Start each problem on a new sheet of paper and write only on one side of each sheet of paper. Remember to write your Social Security Number on each sheet and number them. Good luck!!!

• Problem 1.

In the following examples find the limit function f and prove whether or not the sequences $\{f_n\}$ converge uniformly to f on (0,1):

$$\mathbf{a})$$

$$f_n(x) = \frac{1}{nx+1}$$

$$f_n(x) = \frac{\sin(nx)}{\log n}$$

Here, n = 1, 2, ...

• **Problem 2**. Suppose $F(x,y) = (f_1(x,y), f_2(x,y))$ is a one-to-one C^{∞} map of \mathbb{R}^2 into itself. Suppose also that at every point (x,y) the vectors ∇f_1 and ∇f_2 are orthogonal. Prove that the inverse map F^{-1} is also C^{∞} .

• Problem 3.

Let $\Omega \in \mathbf{R}^2$ be a bounded region with boundary $\partial \Omega$ be a simple closed curve and let u and v be real-valued harmonic functions on Ω which are continuous on the union of Ω and $\partial \Omega$. Starting with Green's theorem, prove that

$$\int_{\partial\Omega} u v_n ds = \int_{\partial\Omega} v u_n ds,$$

where v_n and u_n are normal derivatives, i.e., $v_n = \nabla v \cdot n$, n being normal to the boundary.

• Problem 4.

Verify Stokes formula for the vector field $F(x, y, z) = (3y, -xz, yz^2)$ and the surface determined by $2z = x^2 + y^2$, $z \le 2$.

• Problem 5.

Let f_n be a sequence of non-negative continuous functions on the interval [0,1], such that the sequence is bounded at every point. Prove that this sequence is uniformly bounded on some interval $D \in [0,1]$.

• **Problem 6.** Consider the space $CL_2(-\infty, +\infty)$ of continuous real functions which are square integrable, i.e., if $f \in CL_2(-\infty, +\infty)$, f(x) is continuous, $\int_{-\infty}^{+\infty} f^2(x) dx$ is finite. Consider a continuous function w(x) defined on $(-\infty, +\infty)$, satisfying $w(x) \to 1$ when $x \to \pm \infty$. For any $f, g \in CL_2(-\infty, +\infty)$, define a product

$$\langle f, g \rangle_w = \int_{-\infty}^{+\infty} w(x) f(x) g(x) dx.$$

Prove that

a) $w(x) \ge 0$ is a necessary condition for $\langle f, g \rangle_w$ to be an inner product

b) w(x) > 0 is a sufficient condition for $\langle f, g \rangle_w$ to be an inner product.

• Problem 7.

Suppose we have a sequence of norms $\|\cdot\|_n$, $n=1,2,\ldots$ on a linear space L. Define a distance ρ between two points $x,y\in L$:

$$\rho(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{\|x - y\|_n}{1 + \|x - y\|_n}$$

Prove that $\rho(x,y)$ satisfies triangle inequality, i.e., for any $x,y,z\in L$, $\rho(x,y)\leq \rho(x,z)+\rho(y,z)$.