Real Analysis, Spring 2005, Qualifying Exam

Instructions: Complete all problems. Start each problem on a new page, number the pages, and put only your Social Security number on each page. Clear and concise answers with good justification will improve your score.

1. Let K be a compact metric space with metric d and let f be a continuous real-valued function defined on K (i.e. $f \in C(K)$). Prove that the graph of the function f

$$
\Gamma_{f}=\{(x, y): x \in K, y=f(x)\}
$$

is a compact set in the metric space $(K \times \mathbb{R}, \rho)$, where

$$
\rho\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d\left(x_{1}, x_{2}\right)+\left|y_{1}-y_{2}\right| .
$$

2. Let f, g be real-valued continuous functions defined on the interval $[0,1]$, i.e. $f, g \in$ $C[0,1]$. Consider the uniform metric on $C[0,1]$ given by

$$
\rho(f, g):=\sup _{t \in[0,1]}|f(t)-g(t)| .
$$

For $f \in C[0,1]$, define $F(f)$ as the continuous function defined for each $t \in[0,1]$ by

$$
F(f)(t)=\int_{0}^{t} u f(u) d u
$$

Show that $F: C[0,1] \mapsto C[0,1]$ is a contraction, i.e.

$$
\rho(F(f), F(g)) \leq \alpha \rho(f, g), f, g \in C[0,1]
$$

with some $\alpha \in(0,1)$. Explain why this implies that the equation

$$
f(t)=\int_{0}^{t} u f(u) d u, \quad t \in[0,1]
$$

has a unique solution $f \in C[0,1]$.
3. Let $f \in C[0,1]$ and suppose $f(t)>0$ for all $t \in[0,1]$. Define $\theta_{n}>0$ by the following equation:

$$
\int_{0}^{\theta_{n}} f(x) d x=\frac{1}{n} \int_{0}^{1} f(x) d x
$$

Find the following limit

$$
\lim _{n \rightarrow \infty} n \theta_{n}
$$

4. Suppose that f is differentiable in the closed interval $[a, b]$ and that its second derivative $f^{\prime \prime}$ exists in the open interval (a, b). Suppose also that

$$
f(a)=f(b), f^{\prime}(a)=f^{\prime}(b)=0 .
$$

Show that there exist two points $c_{1}, c_{2} \in(a, b), c_{1} \neq c_{2}$ such that

$$
f^{\prime \prime}\left(c_{1}\right)=f^{\prime \prime}\left(c_{2}\right)
$$

5. Consider the following series

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\ldots
$$

In other words, the general term is $-\frac{1}{n}$ if $n=2^{k}$ for some $k=1,2, \ldots$ and its equal to $\frac{1}{n}$ otherwise. Prove that the series diverges.
6. Prove that in some neighborhood of $(0,0) \in \mathbb{R}^{2}$ there exists unique continuously differentiable function f such that in this neighborhood

$$
x_{1}+x_{2}+f\left(x_{1}, x_{2}\right)-\sin \left(x_{1} x_{2} f\left(x_{1}, x_{2}\right)\right)=0
$$

Find the partial derivatives of the function f at $(0,0)$.
Please state carefully any theorem that you use in this exercise and the next.
7. Let $E \subset \mathbb{R}^{3}$ be open, suppose u and v are twice continuous differentiable real-valued functions on E, i.e. $u, v \in C^{2}(E)$. Let ∇v denote the gradient of $v, \nabla^{2} v=\nabla \cdot(\nabla v)=$ $\sum_{i=1}^{3} \partial^{2} v / \partial x_{i}^{2}$ denote the Laplacian of v.
Assume Ω is a closed subset of E with a positively oriented boundary $\partial \Omega$, and let \mathbf{n} denote the outward normal to $\partial \Omega$.
Prove Green's identities,

$$
\int_{\Omega}\left[u \nabla^{2} v+(\nabla u) \cdot(\nabla v)\right] d V=\int_{\partial \Omega}(u \nabla v) \cdot \mathbf{n} d A
$$

and

$$
\int_{\Omega}\left[u \nabla^{2} v-v \nabla^{2} u\right] d V=\int_{\partial \Omega}(u \nabla v-v \nabla u) \cdot \mathbf{n} d A .
$$

