Real Analysis, Fall 2005, Qualifying Exam

Instructions: Complete all problems to get full credit. Start each problem on a new page, number the pages, and put only your Social Security number on each page. Clear and concise answers with good justification will improve your score.

1. (a) Let A be an open subset of \mathbb{R} . Show that A can be written as a union of a countable number of disjoint open intervals.

(b) Let B be a closed subset of \mathbb{R} . Construct a function $f : \mathbb{R} \to \mathbb{R}$, continuous and such that f(x) = 0 if and only if $x \in B$.

2. (a) Let $f : [a, b] \to \mathbb{R}$ be twice differentiable. Assume f''(x) < 0 for all $a \le x \le b$. Show that for all $0 \le t \le 1$,

$$f(a)t + f(b)(1-t) \le f(at + b(1-t)).$$

Explain the geometric meaning of the above inequality.

(b) Use part (a) to show that if $a, b \ge 0$, then the following inequality holds for all $0 \le t \le 1$,

$$a^t b^{1-t} \le at + b(1-t).$$

3. Let $\{a_n\}_{n\geq 1}$ be a sequence of positive real numbers such that the series $\sum_{n=0}^{\infty} a_n$ is convergent.

(a) Show that the series $\sum_{n=0}^{\infty} a_n x^n$, is absolutely convergent for $|x| \leq 1$. Define the function $f: [-1,1] \to \mathbb{R}$ by the power series,

$$f(x) := \sum_{n=0}^{\infty} a_n x^n.$$

Show that f is differentiable for |x| < 1. Find an explicit formula for the derivative of f in terms of the data sequence $\{a_n\}$.

(b) Show that the function f defined on part (a) is continuous at x = 1.

Show that it is not necessarily true that f is differentiable at x = 1.

4. A step function ϕ on the interval [0, 1] is a real-valued function that is constant on subintervals of the unit interval, and its range is finite. More precisely, there exists a partition of the unit interval

 $x_0 := 0 < x_1 < x_2 < \dots < x_N < x_{N+1} := 1,$

and real numbers $\{a_0, a_1, \ldots, a_N\}$ such that

$$\phi(x) = a_n$$
 for all $x \in [x_n, x_{n+1})$, and $\phi(1) = a_N$.

Show that you can approximate continuous functions by step functions in the uniform metric. That is show that given $\epsilon > 0$ there exists a step function ϕ such that

$$\sup_{x \in [0,1]} |f(x) - \phi(x)| \le \epsilon.$$

5. (a) Let u = u(x, y), v = v(x, y) define a map between two open regions in the plane, which sends the point (x₀, y₀) into (u₀, v₀). Assume that this map is C¹, and with C¹ inverse x = x(u, v), y = y(u, v). Find the formula for ^{∂x}/_{∂u} at (u₀, v₀) in terms of ^{∂u}/_{∂x}, ^{∂u}/_{∂y}, ^{∂v}/_{∂x}, and ^{∂v}/_{∂y} at (x₀, y₀).
(b) Consider the map u = xy, v = x + y³. Verify that this map is C¹ and has a C¹ inverse defined in a neighborhood of the points (x₀, y₀) = (1, 1) and (u₀, v₀) = (1, 2) respectively.

Use part (a) to compute $\frac{\partial x}{\partial u}$ at (u_0, v_0) .

- 6. Consider the planar region R located in the first quadrant and bounded by the curves xy = 1, xy = 2, y/x = 1, and y/x = 2.
 - (a) Draw the region R.
 - (b) Compute the area of the region R.
- 7. Consider the three-dimensional vector field $\vec{F} = -\frac{y}{x^2 + y^2}\hat{i} + \frac{x}{x^2 + y^2}\hat{j}$.
 - (a) Compute the curl of \vec{F} .

(b) Compute the line integral $\int_{\gamma} \vec{F} \cdot d\vec{r}$, where the curve γ is given by the rectangle with vertices A = (-1, -1, 0), B = (2, -1, 0), C = (2, 1, 0), and D = (-1, 1, 0), oriented counterclockwise when viewed from the positive z-axis.