Real Analysis, Fall 2005, Qualifying Exam

Instructions: Complete all problems to get full credit. Start each problem on a new page, number the pages, and put only your Social Security number on each page. Clear and concise answers with good justification will improve your score.

1. (a) Let A be an open subset of \mathbb{R}. Show that A can be written as a union of a countable number of disjoint open intervals.
(b) Let B be a closed subset of \mathbb{R}. Construct a function $f: \mathbb{R} \rightarrow \mathbb{R}$, continuous and such that $f(x)=0$ if and only if $x \in B$.
2. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be twice differentiable. Assume $f^{\prime \prime}(x)<0$ for all $a \leq x \leq b$. Show that for all $0 \leq t \leq 1$,

$$
f(a) t+f(b)(1-t) \leq f(a t+b(1-t))
$$

Explain the geometric meaning of the above inequality.
(b) Use part (a) to show that if $a, b \geq 0$, then the following inequality holds for all $0 \leq t \leq 1$,

$$
a^{t} b^{1-t} \leq a t+b(1-t) .
$$

3. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of positive real numbers such that the series $\sum_{n=0}^{\infty} a_{n}$ is convergent.
(a) Show that the series $\sum_{n=0}^{\infty} a_{n} x^{n}$, is absolutely convergent for $|x| \leq 1$. Define the function $f:[-1,1] \rightarrow \mathbb{R}$ by the power series,

$$
f(x):=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Show that f is differentiable for $|x|<1$. Find an explicit formula for the derivative of f in terms of the data sequence $\left\{a_{n}\right\}$.
(b) Show that the function f defined on part (a) is continuous at $x=1$.

Show that it is not necessarily true that f is differentiable at $x=1$.
4. A step function ϕ on the interval $[0,1]$ is a real-valued function that is constant on subintervals of the unit interval, and its range is finite. More precisely, there exists a partition of the unit interval

$$
x_{0}:=0<x_{1}<x_{2}<\cdots<x_{N}<x_{N+1}:=1
$$

and real numbers $\left\{a_{0}, a_{1}, \ldots, a_{N}\right\}$ such that

$$
\phi(x)=a_{n} \quad \text { for all } \quad x \in\left[x_{n}, x_{n+1}\right), \quad \text { and } \quad \phi(1)=a_{N} .
$$

Show that you can approximate continuous functions by step functions in the uniform metric. That is show that given $\epsilon>0$ there exists a step function ϕ such that

$$
\sup _{x \in[0,1]}|f(x)-\phi(x)| \leq \epsilon
$$

5. (a) Let $u=u(x, y), v=v(x, y)$ define a map between two open regions in the plane, which sends the point $\left(x_{0}, y_{0}\right)$ into $\left(u_{0}, v_{0}\right)$. Assume that this map is C^{1}, and with C^{1} inverse $x=x(u, v), y=y(u, v)$. Find the formula for $\frac{\partial x}{\partial u}$ at $\left(u_{0}, v_{0}\right)$ in terms of $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}$, and $\frac{\partial v}{\partial y}$ at $\left(x_{0}, y_{0}\right)$.
(b) Consider the map $u=x y, v=x+y^{3}$. Verify that this map is C^{1} and has a C^{1} inverse defined in a neighborhood of the points $\left(x_{0}, y_{0}\right)=(1,1)$ and $\left(u_{0}, v_{0}\right)=(1,2)$ respectively. Use part (a) to compute $\frac{\partial x}{\partial u}$ at $\left(u_{0}, v_{0}\right)$.
6. Consider the planar region R located in the first quadrant and bounded by the curves $x y=1, x y=2, y / x=1$, and $y / x=2$.
(a) Draw the region R.
(b) Compute the area of the region R.
7. Consider the three-dimensional vector field $\vec{F}=-\frac{y}{x^{2}+y^{2}} \hat{\imath}+\frac{x}{x^{2}+y^{2}} \hat{\jmath}$.
(a) Compute the curl of \vec{F}.
(b) Compute the line integral $\int_{\gamma} \vec{F} \cdot d \vec{r}$, where the curve γ is given by the rectangle with vertices $A=(-1,-1,0), B=(2,-1,0), C=(2,1,0)$, and $D=(-1,1,0)$, oriented counterclockwise when viewed from the positive z-axis.
