Spring 2007

Instructions: Complete all problems to get full credit. Start each problem on a new page, number the pages, and put only your Social Security number on each page. Clear and concise answers with good justification will improve your score.

1. Let A be a closed subset of \mathbb{R}^{n} and K a compact subset of \mathbb{R}^{n}. The distance between A and K is defined to be

$$
d(A, K):=\inf \{|x-y|: x \in A, y \in K\}
$$

(a) Show that $d(A, K)>0$ if and only if the sets A and K are disjoint.
(b) Is the result true if K is only assumed to be closed?
2. (a) Define what is a connected set in a metric space.
(b) Show that an open set $U \subset \mathbb{R}^{n}$ has at most countably many connected components.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous at $x=0$, and suppose that $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Show that $f(x)=c x$ for some $c \in \mathbb{R}$.
4. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a decreasing function. Assume that $\left|\int_{0}^{\infty} f(x) d x\right|<\infty$. Show that

$$
\lim _{x \rightarrow \infty} x f(x)=0
$$

5. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Show that

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1} x^{n} f(x) d x=f(1)
$$

Hint: Verify the statement first for polynomials.
6. Given a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$, let $\alpha=\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}$. Let

$$
R=\left\{\begin{array}{cl}
\frac{1}{\alpha} & \text { if } \alpha>0 \\
\infty & \text { if } \alpha=0 \\
0 & \text { if } \alpha=\infty
\end{array}\right.
$$

(a) Show that if $R>0$ then the series converges absolutely whenever $|x|<R$ to a function that we will denote $f(x)$.
(b) Show that if $0<K<R$ then the power series converges uniformly to $f(x)$ on $[-K, K]$.
(c) Show that if $R>0$, then the series can be differentiated term by term, and the differentiated series converges to $f^{\prime}(x)$ for $|x|<R$.
7. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function of class C^{2}. A point $p \in \mathbb{R}^{n}$ is a critical point of f if $\frac{\partial f}{\partial x_{i}}(p)=0$ for all $i=1,2, \ldots, n$. The Hessian matrix of f at p is given by

$$
\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(p)\right]_{i, j=1}^{n}
$$

An $n \times n$ matrix A is positive definite if $x^{T} A x>0$ for all $x \neq 0$ in \mathbb{R}^{n}.
(a) Suppose p is a critical point of f and that its Hessian matrix at p is positive definite. Show that p is a local minimum for f.
(b) Show that if the Hessian is positive definite everywhere then f has at most one critical point.
8. (a) State the inverse function theorem.
(b) Identify $\mathbb{R}^{2}=\mathbb{C}$. Let $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $\xi \in \mathbb{C} \rightarrow \xi^{2} \in \mathbb{C}$. Show using (a), that ϕ is locally one to one at any $\xi \neq 0$.
(c) Find the area of the image of the unit disc in $\mathbb{R}^{2}=\mathbb{C}$ under the map $f(\xi):=\xi+\frac{\xi^{2}}{2}$.
(We are identifying $\xi=x+i y \in \mathbb{C}$ with $(x, y) \in \mathbb{R}^{2}$.)

