Department of Mathematics and Statistics University of New Mexico

Real Analysis

-

Qualifying Exam

January 2009

Instructions: Complete all problems to get full credit. Start each problem on a new page, number the pages, and put only your Banner identification number on each page. Clear and concise answers with good justification will improve your score.

1. Let
$$f \in \mathcal{C}([0,1])$$
. Show that $\lim_{n \to \infty} \int_0^1 x^n f(x) dx = 0$.

2. Let |a| < 1 and $f_n(t) = \sin((2n+1)\frac{\pi}{2}t), t \in \mathbb{R}$.

(a) Show that for any a and t as above, the series $\sum_{n=1}^{\infty} a^{2n+1} f_n(t)$ converges absolutely.

(b) Determine if
$$f(t) = \sum_{n=1}^{\infty} a^{2n+1} f_n(t)$$
 is a continuous function of t .

(c) Show that
$$\frac{1}{\pi} \ln \frac{1+a}{1-a} - \frac{2}{\pi}a = \int_0^1 f(t) dt.$$

3. (Lebesgue covering theorem) Let (K, d) be a compact metric space and \mathfrak{U} an open cover of K. Show that there is an $\epsilon > 0$ such that $\{B(x, \epsilon)\}_{x \in K}$ is a refinement of \mathfrak{U} , i.e., every $B(x, \epsilon)$ is contained in some open set from \mathfrak{U} .

4. Let (X, d) be a compact metric space and F a mapping $F: X \to X$ such that

$$d(F(x), F(y)) < d(x, y)$$
 for all $x, y \in X$.

- (a) Show that the function $g: X \to [0, \infty)$, defined by g(x) = d(x, F(x)), is a continuous function, whose minimum must be zero.
- (b) Show that the equation F(x) = x has exactly one solution, i.e., F has exactly one fixed point.

- **5.** (a) State the inverse function theorem on \mathbb{R}^n .
- (b) Suppose $F : \mathbb{R}^n \to \mathbb{R}^n$ is a continuously differentiable map such that its Jacobian is non-zero at every point and F is proper (i.e. the pre-image of any compact set is a compact set). Show that F is onto. Consider the exponential function $f(x) = e^x$, $f : \mathbb{R} \to \mathbb{R}$, is there a contradiction with the previous statement? Explain.
- **6.** An electric charge q located at the origin produces the electric field

$$\vec{E} = \frac{q\vec{R}}{4\pi\epsilon\|\vec{R}\|^3}$$

where $\vec{R} = x\vec{i} + y\vec{j} + z\vec{k}$ and ϵ is a physical constant, called the electric permittivity.

(a) Show that

$$\int \int_{S} \vec{E} \cdot \vec{N} \, dS = 0$$

if the closed surface S does not enclose the origin (we are assuming S to be a piecewise smooth surface bounding a bounded domain in \mathbb{R}^3 , and \vec{N} is the outer normal to the surface S).

(b) Show that

$$\int \int_{S} \vec{E} \cdot \vec{N} \, dS = \frac{q}{\epsilon}$$

if the closed surface S encloses the origin.

- 7. Let $\vec{F} = y\vec{i} x\vec{j} + z\vec{k}$. Evaluate the line integral $\int_C \vec{F} \cdot d\vec{r}$
- (a) along the segment C joining (1, 0, 0) to (1, 0, 4);
- (b) along the helix C given by $x = \cos t$, $y = \sin t$, $z = \frac{4t}{2\pi}$, for $0 \le t \le 2\pi$.
- (c) Decide whether \vec{F} is a conservative vector field or not.