Department of Mathematics and Statistics
 University of New Mexico

Real Analysis

Qualifying Exam

August 2009

Instructions: Complete seven out of the eight problems in the exam to get full credit. Start each problem on a new page, number the pages, and put only your Banner identification number on each page. Clear and concise answers with good justification will improve your score.

1. Let $f \in \mathcal{C}([0,1])$. Show that $\lim _{n \rightarrow \infty} \frac{\int_{0}^{1} x^{n} f(x) d x}{\int_{0}^{1} x^{n} d x}=f(1)$.
2. a) Show that the function $f(x)=\sin \left(\frac{\pi}{x}\right)$ is continuous on the interval $(0,1)$.
b) Is f uniformly continuous on $(0,1)$?
c) For a real valued function g defined on a metric apace (X, d) let

$$
\omega(r)=\sup \left\{\left|g(x)-g\left(x^{\prime}\right)\right|: d\left(x, x^{\prime}\right) \leq r\right\}
$$

Show that g is a uniformly continuous function iff $\lim _{r \rightarrow 0} \omega(r)=0$.
3. Show that any open cover of the interval $[0,1]$ by open intervals in $[0,1]$ contains a subcover of total length less than or equal to 2 . The total length of the subcover is the sum of the lengths of the intervals in the subcover.
4. a) The projection map $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by $p(x, y)=x$. Determine if the projection map is (i) a continuous map, (ii) an open map, or (iii) a closed map. We are using the standard topologies in the corresponding Euclidean spaces.
(b) Let $f: X \rightarrow Y$ be a continuous map between the metric spaces (X, d) and (Y, ρ). If $K \subset X$ is compact, is it true that $f(K)$ is compact? Explain your answers.
5. a) Let A be an $n \times n$ real valued matrix, and $x \in \mathbb{R}^{n}$, show that

$$
\|A x\| \leq\|A\|\|x\|
$$

Where ||.|| denotes the Euclidean norm in the corresponding Euclidean spaces, more precisely, if $A=\left[a_{i j}\right]_{i, j=1}^{n}$, and $x=\left[x_{1}, \ldots, x_{n}\right]^{t}$, then $\|A\|^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}, \quad\|x\|^{2}=\sum_{j=1}^{n}\left|x_{j}\right|^{2}$.
b) Let E be an open subset of \mathbb{R}^{n} such that every two points $x, y \in E$ can be joined by a smooth curve of finite length less than or equal to $100\|x-y\|$. Show that if f is a continuously differentiable map $f: E \rightarrow \mathbb{R}^{n}$, such that, for some constant M we have $\left\|f^{\prime}(x)\right\| \leq M$ for all $x \in E$, then f is uniformly Lipschitz, i.e., for some constant Λ we have $\|f(x)-f(y)\| \leq \Lambda\|x-y\|$, where $\|$.$\| denotes the Euclidean norm in the corresponding Euclidean spaces.$
6. Let E be an open subset of \mathbb{R}^{N}. Assume that the following is a metric on the space of real-valued continuously differentiable functions defined on $E, \mathcal{C}^{1}(E: \mathbb{R})$,

$$
d(f, g) \equiv \sum_{n=1}^{\infty} 2^{-n} \frac{\|f-g\|_{K_{n}}}{1+\|f-g\|_{K_{n}}},
$$

where K_{n} is a sequence of compact sets with $K_{n} \subset \subset K_{n+1}$ (i.e. K_{n} is contained in the interior of $\left.K_{n+1}\right), \cup_{n=1}^{\infty} K_{n}=E$ and for a function $f \in \mathcal{C}^{1}(E: \mathbb{R})$ and a compact $K \subset E$ we let

$$
\|f\|_{K}=\sup _{x \in K}\left(|f(x)|+\sum_{j=1}^{N}\left|D_{j} f(x)\right|\right) .
$$

a) Show that the above metric defines a topology in which convergence means uniform convergence over any compact subset of a function and its first derivatives.
b) Show that $\mathcal{C}^{1}(E: \mathbb{R})$ is complete with respect to the defined metric.
7. Let $\psi \in \mathcal{C}^{1}\left(\mathbb{R}^{2}: \mathbb{R}\right)$ be a function with nowhere vanishing gradient, $\psi=\psi(u, v)$ and $a, b \in \mathbb{R}$ two constants, such that, $a \frac{\partial \psi}{\partial u}+b \frac{\partial \psi}{\partial v} \neq 0$.
a) Show that the equation $\psi(x+a z, y+b z)=0$ defines z implicitly as a function of (x, y), $z=z(x, y) \in \mathbb{R}$.
b) Show that $a \frac{\partial z}{\partial x}+b \frac{\partial z}{\partial y}=-1$.
8. Let $\mathbf{E}=\left(E_{1}, E_{2}, E_{3}\right)$ and $\mathbf{B}=\left(B_{1}, B_{2}, B_{3}\right)$ are 3-D vector fields depending on the time variable t and

$$
\omega=E_{1} d x \wedge d t+E_{2} d y \wedge d t+E_{3} d z \wedge d t+B_{1} d y \wedge d z+B_{2} d z \wedge d x+B_{3} d x \wedge d y
$$

Show that if ω is a closed differential two form in \mathbb{R}^{4}, then:
a) $\frac{d \mathbf{B}}{d t}+\operatorname{curl} \mathbf{E}=0$ and $\operatorname{div} \mathbf{B}=0$ (curl and div are taken in the space variables (x, y, z) only);
b) at any fixed moment t, the field \mathbf{B} has zero flux through any closed smooth surface Σ in \mathbb{R}^{3} - the (x, y, z) space;
c) show the following relation, valid at any fixed moment t, between the circulation of E along a closed curve γ and the flux of \mathbf{B} through the smooth surface Σ with boundary γ,

$$
\int_{\gamma} E_{1} d x+E_{2} d y+E_{3} d z=-\frac{d}{d t} \int_{\Sigma} B_{1} d y \wedge d z+B_{2} d z \wedge d x+B_{3} d x \wedge d y
$$

(Both, the curve and the surface are in in \mathbb{R}^{3} - the (x, y, z) space.)

