Department of Mathematics and Statistics University of New Mexico Qualifying Exam

Real Analysis

August 2012

Instructions: Please hand in all of the 8 following problems. Start each problem on a new page, number the pages, and put only your Banner identification number on each page. Clear and concise answers with good justification will improve your score.

- 1. Suppose $E \subset \mathbb{R}$ and $f_n \to f$ uniformly on E. Prove that if each f_n is uniformly continuous on E then f is uniformly continuous on E.
- 2. Prove the integral test: Suppose that $f:[1,\infty) \to \mathbb{R}$ is positive and decreasing on $[1,\infty)$. Then $\sum_{k=1}^{\infty} f(k)$ converges if and only if f is improperly Riemann integrable on $[1,\infty)$; that is, if and only if

 $\lim_{b\to\infty}\int_1^b f(x)\,dx \text{ exists and is finite.}$

Hint: begin by establishing the inequality $f(k+1) \leq \int_{k}^{k+1} f(x) dx \leq f(k)$, then sum over all $k = 1, \ldots, n-1$.

- 3. Let $f : [a, b] \to \mathbb{R}$ be a function that is twice continuously differentiable $(f \in C^2([a, b]))$. Show that if f has three distinct zeros, then f'', the second derivative of f, has at least one zero.
- 4. Let $f : [a, b] \to \mathbb{R}$ be a function which is bounded and Riemann integrable on [c, b] for every $c \in (a, b)$. Prove that f is Riemann integrable on all of [a, b].
- 5. In a metric space (X, ρ) is it possible to have two distinct points x, y in X such that B(x,r) = B(y,r) for some $0 < r < \infty$? Is this possible when $X = \mathbb{R}$ and ρ is the usual metric? (Here B(x,r) denotes the open metric ball $\{z \in X : \rho(x,z) < r\}$.)

6. Give a counterexample to show that the change of variable formula

$$\int_{\phi(E)} f(u) \, du = \int_E f(\phi(x)) |\det(\phi'(x))| \, dx$$

can fail to hold for Jordan regions $E \subset \mathbb{R}^2$ if the assumption that ϕ is one-to-one is removed even though det $\phi'(x) \neq 0$ in E.

Hint: try taking $\phi(r, \theta) = (r \cos \theta, r \sin \theta)$.

7. Let $\Omega \subset \mathbb{R}^3$ be a closed region for which the divergence theorem applies. Suppose that $\phi: \Omega \to \mathbb{R}$ is a $C^2(\Omega)$ function which solves the Laplace equation

$$\Delta \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$

for all $(x, y, z) \in \Omega$. Show that if ϕ vanishes on $\partial \Omega$, then $\phi(x, y, z) = 0$ for every $(x, y, z) \in \Omega$.

Hint: what is the divergence of the vector field $\phi \nabla \phi$?

8. Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be a continuously differentiable function and $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Suppose that there exists M > 0 such that $|F(x) - T(x)| \le M|x|^2$ for every $x \in \mathbb{R}^n$. Show that if T is invertible, then F is one-to-one in a neighborhood of the origin.

Hint: what is the derivative of G(x) = F(x) - T(x) at the origin?