Department of Mathematics and Statistics
 University of New Mexico
 Qualifying Exam

Real Analysis

January 2013
Instructions: Please hand in all of the 8 following problems. Start each problem on a new page, number the pages, and put only your Banner identification number on each page. Clear and concise answers with good justification will improve your score.

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfies the additive property $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$.
(i) Show that $f(0)=0$ and that $f(-x)=-f(x)$ for all $x \in \mathbb{R}$.
(ii) Show that for all rational numbers $r \in \mathbb{Q}$ we have that $f(r)=a r$ where $a=f(1)$.
(iii) Assume f is continuous at zero. Show that f is continuous on \mathbb{R} and that $f(x)=a x$ for all $x \in \mathbb{R}$.
2. Let (X, d) be a complete metric space, with finite diameter $D:=\sup _{x, y \in X} d(x, y)$. Let $f: X \rightarrow X$, and assume there is a real number $c, 0<c<1$, such that

$$
d(f(x), f(y)) \leq c d(x, y) \quad \text { for all } x, y \in X
$$

(a) Show that f is uniformly continuous on X.
(b) Pick some point $y_{0} \in X$, and given $y_{n} \in X$ define recursively $y_{n+1}:=f\left(y_{n}\right)$. Show that there is some $y \in X$, such that $\lim _{n \rightarrow \infty} y_{n}=y$.
(c) Prove that the point y found in item (b) is a fixed point, that is, $f(y)=y$. Furthermore show that y is the unique such fixed point.
3. Define the function $g: \mathbb{R} \rightarrow \mathbb{R}$ by:

$$
g(x):=\left\{\begin{array}{cc}
e^{-1 / x^{2}} & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

(a) Show that the function g is infinitely many times differentiable on \mathbb{R}. Calculate its k th-derivative at 0 .
(b) Write now the Taylor series based at $x_{0}=0$ (MacLaurin series) of g. Is this a good approximation of g ?
4. The integral test for series says: Let $f:[1, \infty] \rightarrow \mathbb{R}$ be a monotone decreasing nonnegative function. Then the sum $\sum_{n=1}^{\infty} f(n)$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(x) d x:=\sup _{N>0} \int_{1}^{N} f(x) d x$ is finite.
Show by constructing counterexamples that if the hypothesis of monotone decreasing nonnegative function is replaced by continuous non-negative function on intervals $[1, N]$ for all $N>0$ then both directions of the if and only if above are false.
5. A function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is a convex function, if for all $y, z \in \mathbb{R}$ and for all $\lambda \in[0,1]$,

$$
\phi(\lambda y+(1-\lambda) z) \leq \lambda \phi(y)+(1-\lambda) \phi(z) .
$$

Denote by H_{ϕ} the set of linear functions that are smaller than ϕ, that is,

$$
H_{\phi}:=\{h: \mathbb{R} \rightarrow \mathbb{R} \mid \quad h(y)=m y+b \text { for some } m, b \in \mathbb{R} \text { and } h(y) \leq \phi(y) \text { for all } y \in \mathbb{R}\} .
$$

It is known that that for all $y \in \mathbb{R}, \phi(y)=\sup _{h \in H_{\phi}} h(y)$.
Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function and $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Riemann integrable function on a bounded interval I, such that the composition $\phi \circ f$ is Riemann integrable on I. Prove that

$$
\phi\left(\frac{1}{|I|} \int_{I} f(x) d x\right) \leq \frac{1}{|I|} \int_{I} \phi \circ f(x) d x .
$$

Hint: Use that for suitable constants $m, b, \phi \circ f(x) \geq m f(x)+b$ for all $x \in \mathbb{R}$ (explain why this is true).
6. Let $V \subset \mathbb{R}^{n}$ be an open set and $G: V \rightarrow \mathbb{R}^{n}$ is a continuously differentiable map which is not surjective. Given $x \notin G(V)$, let $f: V \rightarrow \mathbb{R}$ be defined by $f(y)=|x-G(y)|^{2}$. If $G^{\prime}(y)$ is invertible for every $y \in V$, show that f is continuously differentiable and that the gradient vector $\nabla f(y)$ is nonzero for every $y \in V$.
7. Let B_{R} denote the ball of radius $R>0$ about the origin in \mathbb{R}^{2}. Suppose $f: \bar{B}_{1} \rightarrow \mathbb{R}$ is a continuous function.
(a) Show that $\lim _{R \rightarrow 0^{+}} \iint_{B_{R}} f(x, y) d x d y=0$.
(b) Explain why the change of variables theorem for Riemann integrable functions by itself just barely falls short of implying the polar coordinates formula

$$
\iint_{B_{1}} f(x, y) d x d y=\int_{0}^{1} \int_{0}^{2 \pi} f(r \cos \theta, r \sin \theta) r d \theta d r
$$

(c) Supplement part (a) to prove that this formula is valid anyway.
8. Explain why Green's theorem is a consequence of Stokes' Theorem.

