Department of Mathematics and Statistics University of New Mexico Qualifying Exam

January 2013

Instructions: Please hand in all of the 8 following problems. Start each problem on a new page, number the pages, and put only your Banner identification number on each page. Clear and concise answers with good justification will improve your score.

- 1. Let $f : \mathbb{R} \to \mathbb{R}$ that satisfies the additive property f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$.
 - (i) Show that f(0) = 0 and that f(-x) = -f(x) for all $x \in \mathbb{R}$.
 - (ii) Show that for all rational numbers $r \in \mathbb{Q}$ we have that f(r) = ar where a = f(1).
 - (iii) Assume f is continuous at zero. Show that f is continuous on \mathbb{R} and that f(x) = ax for all $x \in \mathbb{R}$.
- 2. Let (X, d) be a complete metric space, with finite diameter $D := \sup_{x,y \in X} d(x, y)$. Let $f: X \to X$, and assume there is a real number c, 0 < c < 1, such that

$$d(f(x), f(y)) \le c d(x, y)$$
 for all $x, y \in X$.

- (a) Show that f is uniformly continuous on X.
- (b) Pick some point $y_0 \in X$, and given $y_n \in X$ define recursively $y_{n+1} := f(y_n)$. Show that there is some $y \in X$, such that $\lim_{n \to \infty} y_n = y$.
- (c) Prove that the point y found in item (b) is a *fixed point*, that is, f(y) = y. Furthermore show that y is the *unique* such fixed point.
- 3. Define the function $g : \mathbb{R} \to \mathbb{R}$ by:

Real Analysis

$$g(x) := \begin{cases} e^{-1/x^2} & x \neq 0\\ 0 & x = 0 \end{cases}$$

- (a) Show that the function g is infinitely many times differentiable on \mathbb{R} . Calculate its kth-derivative at 0.
- (b) Write now the Taylor series based at $x_0 = 0$ (MacLaurin series) of g. Is this a good approximation of g?
- 4. The *integral test* for series says: Let $f : [1, \infty] \to \mathbb{R}$ be a monotone decreasing nonnegative function. Then the sum $\sum_{n=1}^{\infty} f(n)$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(x) dx := \sup_{N>0} \int_{1}^{N} f(x) dx$ is finite.

Show by constructing counterexamples that if the hypothesis of monotone decreasing non-negative function is replaced by continuous non-negative function on intervals [1, N] for all N > 0 then both directions of the if and only if above are false.

5. A function $\phi : \mathbb{R} \to \mathbb{R}$ is a convex function, if for all $y, z \in \mathbb{R}$ and for all $\lambda \in [0, 1]$,

$$\phi(\lambda y + (1 - \lambda)z) \le \lambda \phi(y) + (1 - \lambda)\phi(z).$$

Denote by H_{ϕ} the set of linear functions that are smaller than ϕ , that is,

 $H_{\phi} := \{h : \mathbb{R} \to \mathbb{R} | \quad h(y) = my + b \text{ for some } m, b \in \mathbb{R} \text{ and } h(y) \le \phi(y) \text{ for all } y \in \mathbb{R} \}.$

It is known that for all $y \in \mathbb{R}$, $\phi(y) = \sup_{h \in H_{\phi}} h(y)$.

Let $\phi : \mathbb{R} \to \mathbb{R}$ be a convex function and $f : \mathbb{R} \to \mathbb{R}$ be a Riemann integrable function on a bounded interval I, such that the composition $\phi \circ f$ is Riemann integrable on I. Prove that

$$\phi\left(\frac{1}{|I|}\int_{I}f(x)\,dx\right) \leq \frac{1}{|I|}\int_{I}\phi\circ f(x)\,dx.$$

Hint: Use that for suitable constants $m, b, \phi \circ f(x) \ge mf(x) + b$ for all $x \in \mathbb{R}$ (explain why this is true).

- 6. Let $V \subset \mathbb{R}^n$ be an open set and $G: V \to \mathbb{R}^n$ is a continuously differentiable map which is not surjective. Given $x \notin G(V)$, let $f: V \to \mathbb{R}$ be defined by $f(y) = |x - G(y)|^2$. If G'(y) is invertible for every $y \in V$, show that f is continuously differentiable and that the gradient vector $\nabla f(y)$ is nonzero for every $y \in V$.
- 7. Let B_R denote the ball of radius R > 0 about the origin in \mathbb{R}^2 . Suppose $f : \overline{B}_1 \to \mathbb{R}$ is a continuous function.
 - (a) Show that $\lim_{R\to 0^+} \iint_{B_R} f(x,y) \, dx \, dy = 0.$
 - (b) Explain why the change of variables theorem for Riemann integrable functions by itself just barely falls short of implying the polar coordinates formula

$$\iint_{B_1} f(x,y) \, dx \, dy = \int_0^1 \int_0^{2\pi} f(r\cos\theta, r\sin\theta) \, r \, d\theta \, dr.$$

- (c) Supplement part (a) to prove that this formula is valid anyway.
- 8. Explain why Green's theorem is a consequence of Stokes' Theorem.