Department of Mathematics and Statistics
 University of New Mexico
 Qualifying Exam

Real Analysis
August 2013
Instructions: Please hand in all of the 7 following problems. Start each problem on a new page, number the pages, and put only your Banner identification number on each page. Clear and concise answers with good justification will improve your score.

1. Let $\mathcal{C}[0,1]$ denote the space of real-valued continuous functions on $[0,1]$ and

$$
X=\left\{f \in \mathcal{C}[0,1]: \max _{x \in[0,1]}|f(x)| \leq 1\right\}
$$

equipped with the metric

$$
\rho(f, g)=\max _{x \in[0,1]}|f(x)-g(x)| .
$$

Show that (X, ρ) is not compact by constructing an infinite set in X with no limit point.
2. Suppose f is a real-valued differentiable function on $[a, b]$ such that f^{\prime} exists and is continuous on $[a, b]$. Given $\epsilon>0$ prove that there exists a $\delta>0$ such that

$$
\left|\frac{f(t)-f(x)}{t-x}-f^{\prime}(x)\right|<\epsilon
$$

whenever $t, x \in[a, b]$ are any two points satisfying $0<|t-x|<\delta$ (in other words, f is in some sense "uniformly differentiable"). Hint: use the mean value theorem.
3. Suppose $f_{k}:[a, b] \rightarrow \mathbb{R}$ is a sequence of Riemann integrable functions on $[a, b]$ such that the series $\sum_{k=1}^{\infty} f_{k}$ is uniformly convergent.
(a) Show that $\sum_{k=1}^{\infty} f_{k}$ is Riemann integrable.
(b) Show that moreover,

$$
\sum_{k=1}^{\infty} \int_{a}^{b} f_{k}(x) d x=\int_{a}^{b} \sum_{k=1}^{\infty} f_{k}(x) d x .
$$

4. Suppose f is Riemann integrable on $[0, A]$ for all $0<A<\infty$, that $\lim _{x \rightarrow \infty} f(x)=1$, and $t>0$. Prove that

$$
\lim _{t \rightarrow 0^{+}} \int_{0}^{\infty} t e^{-t x} f(x) d x=1
$$

5. A set $\Omega \subseteq \mathbb{R}^{n}$ is said to be path connected if given any $x, y \in \Omega$, there exists a continuous map $\gamma:[0,1] \rightarrow \Omega$ such that $\gamma(0)=x$ and $\gamma(1)=y$ (in other words, given any two points in Ω, there exists a "path" lying in the set which joins them). Suppose $\Omega \subseteq \mathbb{R}^{n}$ is an open, path connected set and that $F: \Omega \rightarrow \mathbb{R}^{m}$ is differentiable map on Ω.
(a) Show that if $F^{\prime}(x)=0$ for every $x \in \Omega$, then F is constant.
(b) Show that if Ω is Not path connected then the result in (a) is not necessarily true.
6. Consider the family of rotations in \mathbb{R}^{2}, that is the set of linear transformations $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ whose matrix takes the form

$$
\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \quad \text { for some } \theta \in \mathbb{R} .
$$

(a) Prove that rotations are volume preserving, that is, $\operatorname{Vol} S=\operatorname{Vol} T(S)$ for all Jordan regions S.
(b) Given a Jordan region S with positive volume, define its centroid as the point (\bar{x}_{1}, \bar{x}_{2}) such that

$$
\bar{x}_{i}=\frac{1}{\operatorname{Vol}(S)} \int_{S} x_{i} d A, \quad i=1,2,
$$

where the integral on the right is to be interpreted as the integral of the function $g_{i}(x)=x_{i}$ over the region S. Suppose that $T(S)=S$ for every S, that is, S is invariant under rotations. Prove that the centroid of S is the origin.
7. Let \mathbf{F} be a continuously differentiable vector field on $\mathbb{R}^{3} \backslash\{0\}$ such that $\operatorname{div} \mathbf{F}(x)=\frac{1}{|x|}$. Given $0<c<d$, find a relationship between

$$
\iint_{\mathbb{S}_{c}^{2}} \mathbf{F} \cdot \mathbf{n} d S \quad \text { and } \quad \iint_{\mathbb{S}_{d}^{2}} \mathbf{F} \cdot \mathbf{n} d S
$$

where \mathbb{S}_{r}^{2} denotes the sphere of radius r in \mathbb{R}^{3} and \mathbf{n} denotes the outward normal vector field to that sphere.

