Department of Mathematics and Statistics University of New Mexico Qualifying Exam

August 2013

Instructions: Please hand in all of the 7 following problems. Start each problem on a new page, number the pages, and put only your Banner identification number on each page. Clear and concise answers with good justification will improve your score.

1. Let $\mathcal{C}[0,1]$ denote the space of real-valued continuous functions on [0,1] and

$$X = \{ f \in \mathcal{C}[0,1] : \max_{x \in [0,1]} |f(x)| \le 1 \}$$

equipped with the metric

Real Analysis

$$\rho(f,g) = \max_{x \in [0,1]} |f(x) - g(x)|.$$

Show that (X, ρ) is not compact by constructing an infinite set in X with no limit point.

2. Suppose f is a real-valued differentiable function on [a, b] such that f' exists and is continuous on [a, b]. Given $\epsilon > 0$ prove that there exists a $\delta > 0$ such that

$$\left|\frac{f(t) - f(x)}{t - x} - f'(x)\right| < \epsilon$$

whenever $t, x \in [a, b]$ are any two points satisfying $0 < |t - x| < \delta$ (in other words, f is in some sense "uniformly differentiable"). Hint: use the mean value theorem.

- 3. Suppose $f_k : [a, b] \to \mathbb{R}$ is a sequence of Riemann integrable functions on [a, b] such that the series $\sum_{k=1}^{\infty} f_k$ is uniformly convergent.
 - (a) Show that $\sum_{k=1}^{\infty} f_k$ is Riemann integrable.
 - (b) Show that moreover,

$$\sum_{k=1}^{\infty} \int_a^b f_k(x) \, dx = \int_a^b \sum_{k=1}^{\infty} f_k(x) \, dx.$$

4. Suppose f is Riemann integrable on [0, A] for all $0 < A < \infty$, that $\lim_{x\to\infty} f(x) = 1$, and t > 0. Prove that

$$\lim_{t \to 0^+} \int_0^\infty t e^{-tx} f(x) \, dx = 1.$$

- 5. A set $\Omega \subseteq \mathbb{R}^n$ is said to be *path connected* if given any $x, y \in \Omega$, there exists a continuous map $\gamma : [0,1] \to \Omega$ such that $\gamma(0) = x$ and $\gamma(1) = y$ (in other words, given any two points in Ω , there exists a "path" lying in the set which joins them). Suppose $\Omega \subseteq \mathbb{R}^n$ is an open, path connected set and that $F : \Omega \to \mathbb{R}^m$ is differentiable map on Ω .
 - (a) Show that if F'(x) = 0 for every $x \in \Omega$, then F is constant.
 - (b) Show that if Ω is NOT path connected then the result in (a) is not necessarily true.
- 6. Consider the family of rotations in \mathbb{R}^2 , that is the set of linear transformations $T : \mathbb{R}^2 \to \mathbb{R}^2$ whose matrix takes the form

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \quad \text{for some } \theta \in \mathbb{R}.$$

- (a) Prove that rotations are *volume preserving*, that is, $\operatorname{Vol} S = \operatorname{Vol} T(S)$ for all Jordan regions S.
- (b) Given a Jordan region S with positive volume, define its centroid as the point (\bar{x}_1, \bar{x}_2) such that

$$\bar{x}_i = \frac{1}{\operatorname{Vol}(S)} \int_S x_i \, dA, \qquad i = 1, 2,$$

where the integral on the right is to be interpreted as the integral of the function $g_i(x) = x_i$ over the region S. Suppose that T(S) = S for every S, that is, S is invariant under rotations. Prove that the centroid of S is the origin.

7. Let **F** be a continuously differentiable vector field on $\mathbb{R}^3 \setminus \{0\}$ such that div $\mathbf{F}(x) = \frac{1}{|x|}$. Given 0 < c < d, find a relationship between

$$\iint_{\mathbb{S}^2_c} \mathbf{F} \cdot \mathbf{n} \, dS \qquad \text{and} \qquad \iint_{\mathbb{S}^2_d} \mathbf{F} \cdot \mathbf{n} \, dS$$

where \mathbb{S}_r^2 denotes the sphere of radius r in \mathbb{R}^3 and \mathbf{n} denotes the outward normal vector field to that sphere.